Passivation (spacecraft)

Last updated

The passivation of a spacecraft is the removal of any internal energy contained in the vehicle at the end of its mission or useful life. [1] Spent upper stages are generally passivated after their use as launch vehicles is complete, as are satellites when they can no longer be used for their design purpose.

Internally stored energy generally takes the form of unused propellant [1] and batteries. [2] In the past, such stored energy has sometimes led to fragmentation or explosion, producing unwanted space debris. [1] [2] This was a fairly common outcome for many of the U.S. [3] and Soviet rocket designs from the 1960s to the 1980s. [4] It remains an occasional problem with derelict second stages left in higher Earth orbits; several U.S. rocket stages fragmented in 2018 and 2019.

The International Telecommunication Union (ITU) and United Nations (UN) recommend that satellites in geosynchronous orbit be designed to move themselves to a disposal orbit some 350 kilometres (220 mi) above the GEO belt, and then remove internally stored energy. Most GEO satellites conform to these recommendations, although there are no enforcement mechanisms. [1]

Standard practices

Within national regimes, where national governments can control the launch licenses of launch vehicles and spacecraft, there are some enforceable requirements for passivation.

The U.S. government has a set of standard practices for civilian (NASA) and military (DoD/USSF) orbital debris mitigation that require passivation for space launches with U.S. launch licenses. "All on-board sources of stored energy of a spacecraft or upper stage should be depleted or safed when they are no longer required for mission operations or postmission disposal. Depletion should occur as soon as such an operation does not pose an unacceptable risk to the payload. Propellant depletion burns and compressed gas releases should be designed to minimize the probability of subsequent accidental collision and to minimize the impact of a subsequent accidental explosion." [5] [6]

Passivation practice on many launches in recent decades has not mitigated second-stage breakups. Upper stage deflagration/breakup events have continued even with newer rocket designs of the 2010s, long after the negative externality of space debris became widely considered as a much larger social problem. Multiple recent debris-producing events are linked to upper stages.

Related Research Articles

<span class="mw-page-title-main">Satellite</span> Objects intentionally placed into orbit

A satellite or artificial satellite is an object, typically a spacecraft, placed into orbit around a celestial body. Satellites have a variety of uses, including communication relay, weather forecasting, navigation (GPS), broadcasting, scientific research, and Earth observation. Additional military uses are reconnaissance, early warning, signals intelligence and, potentially, weapon delivery. Other satellites include the final rocket stages that place satellites in orbit and formerly useful satellites that later become defunct.

<span class="mw-page-title-main">Spaceflight</span> Flight into or through outer space

Spaceflight is an application of astronautics to fly objects, usually spacecraft, into or through outer space, either with or without humans on board. Most spaceflight is uncrewed and conducted mainly with spacecraft such as satellites in orbit around Earth, but also includes space probes for flights beyond Earth orbit. Such spaceflight operate either by telerobotic or autonomous control. The more complex human spaceflight has been pursued soon after the first orbital satellites and has reached the Moon and permanent human presence in space around Earth, particularly with the use of space stations. Human spaceflight programs include the Soyuz, Shenzhou, the past Apollo Moon landing and the Space Shuttle programs. Other current spaceflight are conducted to the International Space Station and to China's Tiangong Space Station.

<span class="mw-page-title-main">Centaur (rocket stage)</span> Family of rocket stages which can be used as a space tug

The Centaur is a family of rocket propelled upper stages that has been in use since 1962. It is currently produced by U.S. launch service provider United Launch Alliance, with one main active version and one version under development. The 3.05 m (10.0 ft) diameter Common Centaur/Centaur III flies as the upper stage of the Atlas V launch vehicle, and the 5.4 m (18 ft) diameter Centaur V has been developed as the upper stage of ULA's new Vulcan rocket. Centaur was the first rocket stage to use liquid hydrogen (LH2) and liquid oxygen (LOX) propellants, a high-energy combination that is ideal for upper stages but has significant handling difficulties.

<span class="mw-page-title-main">Space debris</span> Pollution around Earth by defunct artificial objects

Space debris are defunct human-made objects in space – principally in Earth orbit – which no longer serve a useful function. These include derelict spacecraft, mission-related debris, and particularly-numerous in-Earth orbit, fragmentation debris from the breakup of derelict rocket bodies and spacecraft. In addition to derelict human-made objects left in orbit, space debris includes fragments from disintegration, erosion, or collisions; solidified liquids expelled from spacecraft; unburned particles from solid rocket motors; and even paint flecks. Space debris represents a risk to spacecraft.

<span class="mw-page-title-main">RM-81 Agena</span> American rocket upper stage and satellite bus

The RM-81 Agena was an American rocket upper stage and satellite bus which was developed by Lockheed Corporation initially for the canceled WS-117L reconnaissance satellite program. Following the division of WS-117L into SAMOS and Corona for image intelligence, and MIDAS for early warning, the Agena was later used as an upper stage, and an integrated component, for several programs, including Corona reconnaissance satellites and the Agena Target Vehicle used to demonstrate rendezvous and docking during Project Gemini. It was used as an upper stage on the Atlas, Thor, Thorad and Titan IIIB rockets, and considered for others including the Space Shuttle and Atlas V. A total of 365 Agena rockets were launched between February 28, 1959 and February 1987. Only 33 Agenas carried NASA payloads and the vast majority were for DoD programs.

<span class="mw-page-title-main">Delta (rocket family)</span> Rocket family

The Delta rocket family was a versatile range of American rocket-powered expendable launch systems that provided space launch capability in the United States from 1960 to 2024. Japan also launched license-built derivatives from 1975 to 1992. More than 300 Delta rockets were launched with a 95% success rate. The series was phased out in favor of the Vulcan Centaur, with the Delta IV Heavy rocket's last launch occurring on April 9, 2024.

Orbital Sciences Corporation was an American company specializing in the design, manufacture, and launch of small- and medium- class space and launch vehicle systems for commercial, military and other government customers. In 2014, Orbital merged with Alliant Techsystems (ATK) to create a new company called Orbital ATK, which in turn was purchased by Northrop Grumman in 2018.

<span class="mw-page-title-main">Titan IV</span> Expendable launch system used by the US Air Force

Titan IV was a family of heavy-lift space launch vehicles developed by Martin Marietta and operated by the United States Air Force from 1989 to 2005. Launches were conducted from Cape Canaveral Air Force Station, Florida and Vandenberg Air Force Base, California.

<span class="mw-page-title-main">Launch vehicle</span> Rocket used to carry a spacecraft into space

A launch vehicle is typically a rocket-powered vehicle designed to carry a payload from Earth's surface or lower atmosphere to outer space. The most common form is the ballistic missile-shaped multistage rocket, but the term is more general and also encompasses vehicles like the Space Shuttle. Most launch vehicles operate from a launch pad, supported by a launch control center and systems such as vehicle assembly and fueling. Launch vehicles are engineered with advanced aerodynamics and technologies, which contribute to high operating costs.

<span class="mw-page-title-main">Kessler syndrome</span> Theoretical runaway satellite collision cascade that could render parts of Earth orbit unusable

The Kessler syndrome, proposed by NASA scientists Donald J. Kessler and Burton G. Cour-Palais in 1978, is a scenario in which the density of objects in low Earth orbit (LEO) due to space pollution is numerous enough that collisions between objects could cause a cascade in which each collision generates space debris that increases the likelihood of further collisions. In 2009, Kessler wrote that modeling results had concluded that the debris environment was already unstable, "such that any attempt to achieve a growth-free small debris environment by eliminating sources of past debris will likely fail because fragments from future collisions will be generated faster than atmospheric drag will remove them". One implication is that the distribution of debris in orbit could render space activities and the use of satellites in specific orbital ranges difficult for many generations.

<span class="mw-page-title-main">NASA Orbital Debris Program Office</span>

The NASA Orbital Debris Program Office is located at the Johnson Space Center and is the lead NASA center for orbital debris research. It is recognized world-wide for its leadership in addressing orbital debris issues. The NASA Orbital Debris Program Office has taken the international lead in conducting measurements of the environment and in developing the technical consensus for adopting mitigation measures to protect users of the orbital environment. Work at the center continues with developing an improved understanding of the orbital debris environment and measures that can be taken to control its growth.

A supersynchronous orbit is either an orbit with a period greater than that of a synchronous orbit, or just an orbit whose major axis is larger than that of a synchronous orbit. A synchronous orbit has a period equal to the rotational period of the body which contains the barycenter of the orbit.

<span class="mw-page-title-main">Inertial Upper Stage</span> Space launch system

The Inertial Upper Stage (IUS), originally designated the Interim Upper Stage, was a two-stage, solid-fueled space launch system developed by Boeing for the United States Air Force beginning in 1976 for raising payloads from low Earth orbit to higher orbits or interplanetary trajectories following launch aboard a Titan 34D or Titan IV rocket as its upper stage, or from the payload bay of the Space Shuttle as a space tug.

Thor was a US space launch vehicle derived from the PGM-17 Thor intermediate-range ballistic missile. The Thor rocket was the first member of the Delta rocket family of space launch vehicles. The last launch of a direct derivative of the Thor missile occurred in 2018 as the first stage of the final Delta II.

Spacecraft collision avoidance is the implementation and study of processes minimizing the chance of orbiting spacecraft inadvertently colliding with other orbiting objects. The most common subject of spacecraft collision avoidance research and development is for human-made satellites in geocentric orbits. The subject includes procedures designed to prevent the accumulation of space debris in orbit, analytical methods for predicting likely collisions, and avoidance procedures to maneuver offending spacecraft away from danger.

<span class="mw-page-title-main">Orbital propellant depot</span> Cache of propellant used to refuel spacecraft

An orbital propellant depot is a cache of propellant that is placed in orbit around Earth or another body to allow spacecraft or the transfer stage of the spacecraft to be fueled in space. It is one of the types of space resource depots that have been proposed for enabling infrastructure-based space exploration. Many depot concepts exist depending on the type of fuel to be supplied, location, or type of depot which may also include a propellant tanker that delivers a single load to a spacecraft at a specified orbital location and then departs. In-space fuel depots are not necessarily located near or at a space station.

<span class="mw-page-title-main">Space tug</span> Spacecraft used to transfer cargo from one orbit to another

A space tug is a type of spacecraft used to transfer spaceborne cargo from one orbit to another orbit with different energy characteristics. The term can include expendable upper stages or spacecraft that are not necessarily a part of their launch vehicle. However, it can also refer to a spacecraft that transports payload already in space to another location in outer space, such as in the Space Transportation System concept. An example would be moving a spacecraft from a low Earth orbit (LEO) to a higher-energy orbit like a geostationary transfer orbit, a lunar transfer, or an escape trajectory.

AMC-9 is a commercial broadcast communications satellite owned by SES World Skies, part of SES S.A. Launched on 6 June 2003, from Baikonur Cosmodrome, Kazakhstan, on the 300th launch of a Proton family rocket, AMC-9 is a hybrid C-band / Ku-band satellite located at 83° West, covering Canada, United States, Mexico, and Caribbean. It is owned and operated by SES S.A., formerly SES Americom.

<span class="mw-page-title-main">USA-282</span> United States military satellite

USA-282, also known as SBIRS GEO-4, is a United States military satellite and part of the Space-Based Infrared System.

<span class="mw-page-title-main">Space sustainability</span> Activity aimed at minimising space environmental impact

Space sustainability aims to maintain the safety and health of the space environment.

References

  1. 1 2 3 4 Johnson, Nicholas (2011-12-05). Livingston, David (ed.). "Broadcast 1666 (Special Edition) - Topic: Space debris issues" (podcast). The Space Show. 1:03:05–1:06:20. Retrieved 2015-01-05.
  2. 1 2 Bonnal, Christophe (2007). "Design and operational practices for the passivation of spacecraft and launchers at the end of life". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 221 (6): 925–931. doi:10.1243/09544100JAERO231. ISSN   2041-3025. S2CID   110656798.
  3. 50-Year Old Rocket Stage Involved in Orbital Debris Event, Spaceflight 101.
  4. A. Rossi et al, "Effects of the RORSAT NaK Drops on the Long Term Evolution of the Space Debris Population", University of Pisa, 1997.
  5. "U.S. Government Orbital Debris Mitigation Standard Practices" (PDF). NASA . United States Federal Government. Retrieved 2013-11-28.
  6. "Orbital Debris – Important Reference Documents". NASA Orbital Debris Program Office. Archived from the original on 2016-07-02.