Pedersen rifle

Last updated
Pedersen rifle
Pedersen Rifle.jpg
Pedersen's toggle-delayed blowback rifle in caliber .276 Pedersen
Type Semi-automatic rifle
Place of originUnited States
Service history
Used by United States Army (testing and field trials)
Imperial Japan (prototype example encountered after Battle of Okinawa)
Production history
Designer John Pedersen
Designed1920s
No. builtLess Than 150 (conjecture)
Specifications
Mass4.1 kg (9.0 lb)
Length1,117 mm (44.0 in)
Barrel  length610 mm (24 in)

Cartridge .276 Pedersen
Action Toggle-delayed blowback
Feed systemFixed 10-round box magazine

The Pedersen Rifle, officially known in final form as the T1E3 rifle, was a United States semi-automatic rifle designed by John Pedersen that was made in small numbers for testing by the United States Army during the 1920s as part of a program to standardize and adopt a replacement for the M1903 Springfield.

Contents

Although the Pedersen was rated for a time as the most likely candidate for standardization and adoption, the .30 caliber M1 Garand was chosen instead. [1]

Background

The U.S. Army had shown interest in the idea of self-loading (semiautomatic) rifles before World War I. Combat experience during that war had made clear two general points: that the standard caliber .30-06 rifle cartridge was excessively powerful for the ranges (500 yards and less) where infantry combat was likely to take place, and that bolt-action rifles such as the M1903 Springfield were seriously lacking in firepower and second-shot hit capability. The U.S. Army Ordnance Bureau had no problem in soliciting designs and prototype weapons from inventors, and sought to facilitate their work by supplying barrels and other hardware that the inventors were likely not to be able to fabricate. However, such a traditional way of developing new weapons all too often saw potentially worthwhile designs wash out of the testing process due to a lack of engineering skills and experience both in the design and manufacturing phases.

Testing in the early 1920s led the Ordnance Bureau to identify three rifle designs - the Bang rifle, the Thompson Autorifle, and the primer-protrusion actuated Garand Model 1919 rifle - as promising candidates. However, all three designs were burdened with the high pressure and heat generating characteristics of the .30-06 ammunition, which looked likely to result in a weapon too heavy and too subject to overheating to be worthwhile. Trials with a small number of "militarized" .25 Remington autoloading rifles, despite their unsuitability for combat, provided a body of practical experience with semiautomatic rifles and an appreciation for the idea less powerful ammunition might be a critical part of the successful development of such weapons.

Proposals

At this point in time, John Douglas Pedersen made an unsolicited proposal to the Army Ordnance Bureau which would have a profound impact on the entire effort to develop a serviceable semiautomatic rifle. In essence, he proposed to develop a rifle that would be neither recoil operated (which would involve excessive recoil and generate inaccuracy, due to the barrel moving within the rifle) nor gas operated (which would be complex, heavy, and potentially give undesirable operating characteristics). Additionally, he proposed to develop a new cartridge in the caliber .256 to .276 (6.5 mm to 7 mm) range that, while less powerful than the .30-06, would be effective out to 300 yards. Pedersen had gained a good reputation as both a firearms designer and production engineer at the Remington Arms Company. While at Remington, he designed four notable commercial firearms. Pedersen also designed the Pedersen Device during World War I. This was a sub-firearm intended to allow battlefield conversion of Springfield and M1917 Enfield rifles into semiautomatic rifles firing a pistol-sized cartridge. [1]

The Bureau of Ordnance was sufficiently impressed that in 1923 it granted Mr. Pedersen a contract providing office space, a project budget, an annual salary, and in compensation for his departure from Remington the right to patent his work and collect royalties from the U.S. Government if his rifle was adopted.

Development of the rifle and cartridge

Pedersen got to work in 1924, focusing first on the cartridge. The .276 Pedersen (7 x 51 mm) cartridge as finally standardized and manufactured at Frankford Arsenal was 12 in (13 mm) shorter than the .30-06, one quarter lighter, would generate nearly a third less heat and about half the recoil energy. Despite being smaller, it had a trajectory similar to the .30-06., with a muzzle velocity of 2,600 feet per second (792 m/s). The drawbacks of the design were diminished tracer performance, less effective armor piercing, plus anticipated logistical complications coming from the fact the .30-06 would remain in use for machine guns. The cartridge did, however, make a reasonably light yet effective semiautomatic rifle possible.

By early 1926, Pedersen had designed and built a prototype rifle. He had researched Army tactics and operational concepts, and had engineered the tooling for parts manufacture as an integral part of engineering the gun parts themselves. Such an application of sound research and development made a very strong impression on Army personnel when the rifle was presented for inspection and testing. The rifle was a solid, well-finished weapon, 44 inches (112 cm) long, weighing slightly over 8 pounds (3.6 kg). It utilized a disposable ten-round en bloc clip, a system favored at the time. Pedersen's rifle utilized a sophisticated up-breaking toggle-joint system like the Parabellum P.08 [2] but improved by utilizing delayed blowback. This system was simple and free of both the fragility and severe kick of recoil operation, and the weight and complexity of gas operation (as in the Browning Automatic Rifle). To ease extraction, cartridge cases were coated in mineral wax. [3] This left a thin film that was “hard, and durable, and was not sticky,”. [4] The waxed cases solved the issue of difficult extraction, but hindered acceptance of the Pedersen rifle because officials feared that the wax would attract dirt and cause operating failures.

Testing and evaluation

En-bloc clip loaded with 10 rounds of .276 Pedersen. Image from John Pedersen patent. Pedersen en-Block Clip.PNG
En-bloc clip loaded with 10 rounds of .276 Pedersen. Image from John Pedersen patent.

In February 1926, the new rifle and ammunition were tested in the presence of representatives of both the Army Chief of Infantry and the Chief of Cavalry. The results were “highly favorable” [5] Production was authorized on May 20, 1926 of 20 rifles and 5 carbines. Following tests of reworked versions of the Thompson and primer-actuated Garand rifles, the Infantry Board in June, 1926 recommended further testing of all three rifles, but clearly indicated in its report the Pedersen rifle was the most developed of the three.

In April 1928 came the Infantry Board test report on the T1E3, and it was a solid endorsement of the rifle. The Board called for adoption of the T1E3 rifle to replace both the Model 1903 Springfield and the Browning Automatic Rifle. The Cavalry Board was also positive in its own evaluation of the T1E3. To soldiers used to the heavy recoil and exhausting manual operation of the Springfield rifle, the moderate recoil and self-loading functionality of the T1 rifle clearly must have made an impression. Due to problems with primer-actuation, John Garand gave up work on a .30-06 semiautomatic rifle and also focused exclusively on caliber .276.

Doubts about the lethal effect of the .276 round were strong enough to result in extensive tests in June and July 1928 by the “Pig Board” (so called because lethality tests were carried out on anaesthetized pigs). The Board found all three rounds (.256, .276, and .30) were wounding out to 1,200 yards (1100m). At 300 yards, the smaller .256 caliber round delivered "by far the most severe wounds in all parts of the animal." At 600 yards the results were similar for all three rounds. No compelling case could be made against the Pedersen round. [6]

Further tests and a final decision

In July 1928, the War Department created the Army, Navy, and Marine Corps Semiautomatic Rifle Board to further test and evaluate both existing and newly submitted rifles with an eye toward focusing on standardizing the most serviceable design. Unlike previous boards, this one would continue to function for three years, and would end up undertaking three series of tests. This Board displayed a strong interest in the development of a .30-'06 semiautomatic rifle, but at the same time recognized the potential effectiveness of the .276 round at ranges up to 600 yards and that relatively light weight rifles that could be built around it; the Board remained consistent with the de facto Army policy of favoring adoption of the .276 round. Counting the Pedersen T1E3 rifle (by this time covered by U.S. Patent 1,737,974 ), seven rifles were submitted for consideration. One of these rifles was John Garand's gas-operated .276 rifle, the T3, which had a 10-round magazine loaded with a symmetrical en bloc clip.

Pedersen toggle-delayed blowback action. Image from John Pedersen patent. PedersenPatentToggle.gif
Pedersen toggle-delayed blowback action. Image from John Pedersen patent.

The conclusion of the tests, held in August 1929, saw the Board rate the T1E3 and the T3 as superior to all the others. [1] Both rifles were found to be subject to excessive malfunctions, but the T3 was rated superior to the T1E3. Specific T1E3 defects were: failure of the breech mechanism to close, misfires, breech mechanism override (failure to feed), and breakage of a crank and a sear bar. The Board recommended manufacturing of 20 T3 rifles for service test, and in addition recommended building a caliber .30-'06 version of the T3 for evaluation.

Cartridge lethality was again investigated by the “Goat Board”, this time with shooting tests on anaesthetized goats and careful measurement of entry and exit velocities. However, the test results again demonstrated no superiority of caliber .30 ammunition at normal combat ranges.

The year 1931 saw testing of the T1E3 and the twenty T3E2 rifles by the Infantry. The Infantry Board rated the T3E2 superior in effective firepower and simplicity of construction (the T3E2 had 60 parts, while the T1E3 had 99 parts). This Board, which three years earlier had recommended adoption of the T1, now favored the T3E2; it continued to favor the .276. However, the Chief of Infantry broke with the Infantry Board and stated a preference for .30 caliber.

The .30-'06 Garand rifle (essentially an enlarged T3E2) was quickly built and, under the confusing designation T1E1, was tested along with the T3E2 and the Pedersen T1E3 during the remainder of 1931. The Semiautomatic Rifle Board now exhibited a notably critical attitude toward the T1E3. The Board found fault with the requirement for lubricated cartridge cases (seemingly regardless of the technical merits of Mr. Pedersen's case treatment concept), poor trigger pull, and the upward break of the breech mechanism. A more substantive complaint had to do with the complete exposure of the breech mechanism when held open—the Board correctly cited the vulnerability of the rifle to mud and dust while in this condition. The Board also reported slamfires (the Garand T3E2 was reported to dimple cartridge primers with its firing pin, but did not slamfire).

In the end, funding issues forced a decision. Faced with the possible loss of funds already authorized by Congress, the Board met for one more time in January 1932 and decided to recommend approval of the T3E2 (the .276 Garand) for limited procurement by the Army and to continue development of the T1E1 (the .30-'06 Garand). With this action, the Pedersen rifle was effectively dropped from consideration. In four more years, almost to the day, an improved version of rifle T1E1 would be adopted as the M1.

As Springfield Armory tooled for and refined the Garand, Pedersen continued to work on another rifle. He developed a .30 caliber model with a conventional gas-trap piston and multi-piece operating rod system. He fought to have it tested by the U.S. Army prior to World War II. At around the same time, serious difficulties were being encountered with the Garand and questions had been raised. Both Pedersen and Melvin M. Johnson, Jr. attempted to capitalize on the troubles. Based on serial numbers, it is thought up to 12 prototype gas-trap Pedersen rifles were made. One example of the model G-Y resides at the Springfield Armory Museum. [7]

Foreign interest

Publicity of the U.S. Army's serious consideration of adopting the Pedersen rifle as standard issue generated similar interest in the rifle in the United Kingdom. Pedersen traveled to the UK in 1930 to oversee tooling up of a production facility by Vickers-Armstrong for manufacturing of rifles for test by the UK Government and for possible marketing to other countries. The UK tested the rifle in 1932 along with other prototype semiautomatic rifles, but decided not to take any further action. Vickers apparently both manufactured the rifle in small quantities and also further developed the design. A caliber .276 Vickers-Pedersen rifle offered for sale in March 2008 by the James D. Julia Auction firm was serial numbered 95, and the clip that accompanied the rifle was of a curved and symmetrical design (suitable for loading into the magazine either end up). The butt stock had a noticeably different shape than those of rifles made at Springfield Armory, but otherwise the rifle was identical to the U.S. production T1E3 and thus incorporated the design revisions covered by U.S. Patent 1,866,722 to make his rifle more modular in construction and thus easier to disassemble and maintain.

Japanese Pedersen

Pedersen reportedly then went to Japan to encourage interest in his rifle by the Imperial Japanese Army, which appears to have led to the building of 12 rifles and 12 carbines for testing around 1935; the project reportedly was abandoned in 1936. These weapons were apparently made to fire the standard 6.5 mm Japanese service cartridge, and incorporated design changes which radically changed the appearance of this rifle when compared to the original T1E3 rifle. Most notable was the use of a spool-type Schoenauer magazine which formed a very pronounced swell in the stock just ahead of the trigger guard. A receiver-mounted safety lever and a stripper clip guide at the front of the breech block head are also noticeable features. A ventilated wooden handguard completely covers the barrel, while the stock furniture more resembles that of the later Type 99 rifle than the then-standard Type 38. The sights are offset to the left, although the cycling of the breech block mechanism would still momentarily interrupt the line of sight. The hinge pin was also made removable. Reportedly the Japanese Army did not really grasp the importance of case lubrication for this type of rifle, so the test rifles never really functioned satisfactorily. A carbine version, serial number 5, has been recently described in some detail. A photo of a field stripped rifle or carbine, reportedly of a specimen found in Japan at the end of World War II, has been reproduced in Hatcher's The Book of the Garand and some other gun books. [8] [9]

Legacy

While the Pedersen rifle never achieved the status of a standard-issue weapon of the U.S. Army, the rifle did have a visible impact on the process by which the ultimate winner—the M1 Garand rifle—was selected. John Pedersen's work in creating and improving his rifle was a coherent research and development process which significantly raised the bar for those trying to get a hearing from Army Ordnance regarding their designs. Tellingly, the only serious competition that the Pedersen rifle had in the end was the rifle created by John C. Garand—like Pedersen, a talented designer and engineer with a solid grounding in the particulars of production tooling.

The initial success and ultimate failure of the Pedersen rifle has sometimes been interpreted as the simple workings-out of biased or overly conservative decision-making in the face of technological innovation. However, there is little in the historical record to support such interpretations. Simply put, the Pedersen rifle had shortcomings. The rifle was complex, making concerns about mass production to an exacting standard of parts interchangeability quite legitimate. Issues revealed in Army tests were serious and inherent in the design. Certainly the concerns expressed by the Semiautomatic Rifle Board regarding the vulnerability of the operating mechanism to sand and mud when held open were very real. However, what the rifle did succeed in demonstrating was that a semiautomatic combat rifle was a realistic proposition. The initial enthusiasm of the Infantry Board for the adoption of this rifle is certainly strong testimony on this point. Bias is certainly visible in the negative attitude taken toward what was unquestionably the most innovative aspect of the rifle's development: the lubrication of the cartridge cases with Pedersen's dry wax process. The implicit equation of this process with the messy and contamination-vulnerable case oiling system used in the Thompson Rifle (also a hesitation blowback design) certainly shows a degree of obstinate conservatism. This concept may yet have potential application in firearms development even now, but it was certainly not appreciated or even liked back in the 1920s.

Some writers have implied that the Pedersen rifle was effectively killed by Chief of Staff Douglas MacArthur’s decision to require use of the .30-06 cartridge for the standard semiautomatic rifle. However, the record does not support such an interpretation. The Pedersen rifle was rejected a month before Gen. MacArthur pronounced on the subject, at a point in time when the caliber .276 T3E2 Garand rifle was the clear winner of the competition and ready for initial production. History shows MacArthur vetoed the .276 Pedersen cartridge for use in the Garand rifle. [1]

Description and operation

The Pedersen T1E3 rifle was made in two versions: an infantry rifle with a 24-inch barrel, full-length stock with an M1903-type front band, 44 inches long (twenty made); and a cavalry carbine with a 21-inch barrel and half-stocked like the Krag-Jørgensen cavalry carbine (five made). An unknown but larger number of infantry rifles were made by Vickers-Armstrong in Britain. The infantry rifle had a planned weight of 8 pounds, 2 ounces; weights of the rifles tested by the Infantry Board averaged out at 9 pounds, 2 ounces. The walnut stock had a semi pistol grip of rather shallow contour and a pronounced drop at the butt with a long cheek rest formed on top of the butt. A ventilated metal handguard covered the barrel only between the receiver and the lower band. Under the handguard was a thicken section of the barrel machined with 12 spiraling grooves, the whole design evidently intended to provide both heat sink and radiant air cooling effect. (The metal handguard was a point of criticism during Army tests due to it becoming too hot to the touch after moderate firing; the lack of uniform wood covering of the barrel was judged the cause of accuracy problems due to uneven expansion of the hot barrel). The built-in ten-round magazine included a steel lower body that protruded below the bottom of the stock approximately one inch ahead of a conventional milled steel trigger guard; this magazine body had smooth and distinctive contours that reflected both the shapes of the feed mechanism parts and the designer's evident concern for the soldier's ease of use and safety. The front sight was an unprotected M1903 blade; the rear sight, mounted at the extreme rear of the receiver, was a protected peep sight of original design adjustable for windage and elevation. The receiver was entirely open on top between the barrel ring and the rear sight mount. The stubby, flat operating handle for the toggle joint breech mechanism protruded to the right from the forward part of the crank (the rearmost part of the breech mechanism).

The breech block mechanism was made in three parts. From front to rear they were:

  1. The breech block head; this part supported the cartridge base.
  2. The body; this was linked to Number 1 and Number 3.
  3. The crank; this was secured to the rear of the receiver with the hinge pin.

The Pedersen rifle operated on the hesitation blowback principle: energy released by firing a cartridge immediately caused the breech to start moving rearward, but mechanical leverage built into the mechanism caused the actual opening of the breech to be delayed long enough so that pressure within the barrel would fall to a safe level. This was achieved with a bearing surface machined onto the front end of the crank. As the case head pressed on the breech block head and forced it to move rearward (as guided by contact surfaces in the receiver), pressure was exerted on the body, which in turn exerted pressure on the crank. The crank had contact surfaces on its rear end which would transmit pressure to corresponding surfaces in the rear of the receiver, thus relieving the hinge pin of excessive stress. As the rear surface of the body continued to exert pressure on the bearing surface on the front of the crank, the leverage exerted would cause the crank to move about 95 degrees upward from the horizontal on the fulcrum formed by it being attached to the rear of the receiver by the hinge pin. The breech block mechanism thus operated in a manner resembling the operation of the Luger pistol, but unlike that pistol the Pedersen mechanism was at no time mechanically locked. The operating principle was the same as that used in the Model 07/12 Schwarzlose machine gun used by Austria-Hungary during the First World War.

As with all hesitation blowback weapons, the Pedersen rifle had to have some means to prevent cartridge cases from becoming stuck in the chamber due to the relatively high breech pressure and operating velocity existing at the moment of extraction. The measure adopted by the designer was the sophisticated case coating technique described earlier, which in combination with the taper of the cartridge case sides undoubtedly contributed to the high degree of reliability noted in all Army tests. Use of uncoated-case rounds (intentionally done in at least one test) caused the rifle to completely fail to function.

Starting with the rifle unloaded and the breech mechanism closed, the loading and operating cycle would be as follows.

  1. Grasping the operating handle with the right hand, the operator would pull the crank up and back until vertical, at which point the hold open device would engage the underside of the breech block head. The breech return spring, entirely housed within the crank, would at this point be fully compressed.
  2. An asymmetrical spring steel clip of ten rounds in a double-staggered column would then be inserted, feed end up, into the magazine against the spring pressure of the magazine follower; when fully inserted the clip would be caught and held by a catch. (Note: this clip, like the clip used in the Austrian Model 95 rifle, could only be inserted one way and thus could potentially cause confusion under the stress of combat). Unloading the magazine would be done by (if necessary) retracting and holding open the breech mechanism, then pushing the trigger forward from its neutral position; the clip and any remaining cartridges would be ejected upward.
  3. By pulling back slightly on the operating handle, the operator would then free the breech block head from the hold open device and under pressure from the operating spring the breech block mechanism would straighten, driving the breech block head forward to push the topmost cartridge forward from under the feed lips of the clip, chambering the cartridge, and engaging the extraction groove around the base of the cartridge with the extractor. The extractor and the spring-loaded plunger type ejector were both built into breech block head. If the rifle was not immediately to be fired, the spring-loaded striker assembly (housed within the breech block head and body) could be locked by pushing the cross-bolt safety located in the breech body from right to left; this would also lock the breech block mechanism so that it could not be opened. (Army test reports identified the safety and the firing mechanism as weak areas of the T1 rifle: the safety, when applied, prevented clearing a loaded chamber and did not lock the trigger mechanism; the safety was also subject to damage. The striker was reported to have become stuck on some occasions, causing slam-fires).
  4. With the rifle ready to fire, pressing the trigger would cause movement of a connector bar extending forward toward the magazine well; the connector bar movement would then cause the sear to move out of engagement with the striker and cause the chambered round to fire. (In common with bullpup rifles, which also separate the trigger from the firing mechanism, the T1 was reported to suffer from a relatively poor trigger pull feel; during at least one series of tests the connector bar broke). When the breech block mechanism cycled, the crank would momentarily block the line of sight (Army riflemen testing this rifle apparently got used to this effect quickly, but there were negative comments in the test reports regarding the crank striking the edge of the Brodie helmet then standard issue in the U.S. Army as well as damaging the brims of the felt campaign hats then worn as part of the field uniform).
  5. When the last round in the clip was chambered and then fired, final upward movement of the magazine follower would engage the hold open device, which would catch and hold the breech block head in the open position; the empty clip would be ejected upward. The breech block mechanism could be released by depressing the follower and pulling back slightly on the operating handle. (The T1 and the Cal .276 Garand both had a tendency to hold open their actions and eject clips while one round still remained in the magazine).

Basic field stripping of the T1 rifle was simple: with the rifle unloaded and the mechanism held open, pressing on a stud on the underside of the crank would lock the breech return spring. The breech block head could then be guided up and out through inclined guide ways in the receiver and the crank then could be freed from the hinge pin, allowing the entire breech mechanism to be removed as a unit. The magazine housing would then be dismounted by pressing forward on the housing until the forward retaining lip would become free from the groove in the forward part of the receiver that it normally rested in and then rotating the housing downward. The entire trigger and feed mechanism group would then be removed by pressing a spring-loaded cross bolt at the rear of the trigger guard just below the stock; the entire assembly would then be freed to be pulled down and rearward to separate it from the receiver and stock. The general concept of the field stripping process is similar to that of the SKS carbine. The stock and barrel-receiver assembly would normally not be separated, following the pattern of rifles such as the German Model 98 Mauser or the Model 1903 Springfield.

Serial numbers (U.S. rifles)

The following table is derived from information obtained from the following Web site: . Much of the record keeping on the Pedersen and other rifles of this period is now long gone. What records the researchers at this Web site were able to find mostly appear to relate to the final period of competitive testing in 1931.

SA = Springfield Armory.

  1. 2/11/31 SA
  2. Carbine 2/11/31 SA
  3. 2/11/31 SA; 4/11/31 SA to Ft. Benning
  4. Carbine 2/11/31 SA; 4/11/31 SA to Ft. Riley
  5. 2/11/31 SA; 4/11/31 SA to Ft. Benning
  6. 2/11/31 SA
  7.  ?
  8. Carbine 2/11/31 SA; 4/11/31 SA to Ft. Riley
  9. 2/11/31 SA (deficient); 4/11/31 SA (being repaired)
  10. 2/11/31 SA (deficient); 4/11/31 SA (being repaired)
  11. 9/28/31 at Ordnance Office
  12.  ?
  13. 8/30/27 SA to Ft. Benning
  14. 2/11/31 SA; 4/11/31 SA to Ft. Benning
  15.  ?
  16. 2/11/31 SA; 4/11/31 SA to Ft. Benning
  17. 8/30/27 SA to Ft. Riley; 4/11/31 SA to Ft. Benning
  18. 2/11/31 SA; 4/11/31 SA to Ft. Benning
  19. 2/11/31 SA; 4/11/31 SA to Ft. Benning
  20. Carbine 2/11/31 SA; 4/11/31 SA to Ft. Riley
  21. 2/11/31 SA; 4/11/31 SA to Ft. Riley
  22. 2/11/31 extra receiver
  23. 2/11/31 sold to J D Pedersen
  24.  ?
  25.  ?

From the information in this table we apparently can identify four of the five carbines and 16 of the 20 rifles. Serial number 22 was apparently assigned to a receiver which was not in fact used for building a complete rifle; this would appear to indicate that only 19 of the 20 authorized rifles were built.

See also

Notes

  1. 1 2 3 4 Canfield, Bruce. "Garand vs. Pedersen," Archived 2013-12-05 at the Wayback Machine American Rifleman , July 2009.
  2. Illustrated Encyclopedia of 20th Century Weapons and Warfare (London: Phoebus, 1978), Volume 19, p.2092, "Pedersen".
  3. Hatcher, Julian. (1947). Hatcher's Notebook. The Military Service Press Company. ISBN   0-8117-0795-4 p. 38-44
  4. Hatcher, The Book of the Garand, p.69.
  5. Hatcher, p.72.
  6. Rose, Alexander (2008). American Rifle: A Biography. Random House. p. 299. ISBN   9780440338093.
  7. Springfield Armory Collection [ permanent dead link ]
  8. Japanese Pedersen Semi Auto Rifles & Carbines.
  9. Japanese Pedersen Rifle

Related Research Articles

<span class="mw-page-title-main">Single-shot</span> Firearm that holds one round of ammunition

In firearm designs, the term single-shot refers to guns that can hold only a single round of ammunition inside and thus must be reloaded manually after every shot. Compared to multi-shot repeating firearms ("repeaters"), single-shot designs have no moving parts other than the trigger, hammer/firing pin or frizzen, and therefore do not need a sizable receiver behind the barrel to accommodate a moving action, making them far less complex and more robust than revolvers or magazine/belt-fed firearms, but also with much slower rates of fire.

<span class="mw-page-title-main">Semi-automatic rifle</span> Type of autoloading rifle

A semi-automatic rifle is an autoloading rifle that fires a single cartridge with each pull of the trigger, and uses part of the fired cartridge's energy to eject the case and load another cartridge into the chamber. In contrast, a bolt-action rifle requires the user to cycle the bolt manually before they can fire a second time, and a fully automatic rifle fires continuously until the trigger is released.

<span class="mw-page-title-main">Action (firearms)</span> Functional mechanism of breech-loading

In firearms terminology, an action is the functional mechanism of a breech-loading firearm that handles the ammunition cartridges, or the method by which that mechanism works. Actions are technically not present on muzzleloaders, as all those are single-shot firearms with a closed off breech with the powder and projectile manually loaded from the muzzle. Instead, the muzzleloader ignition mechanism is referred to as the lock.

<span class="mw-page-title-main">M1 Garand</span> American semi-automatic rifle

The M1 Garand or M1 rifle is a semi-automatic rifle that was the service rifle of the U.S. Army during World War II and the Korean War.

The M14 rifle, officially the United States Rifle, Caliber 7.62 mm, M14, is an American selective-fire battle rifle chambered for the 7.62×51mm NATO cartridge. It became the standard-issue rifle for the U.S. military in 1957, replacing the M1 Garand rifle in service with the U.S. Army by 1958 and the U.S. Marine Corps by 1965. The M14 was used by the U.S. Army, Navy, and Marine Corps for Basic and Advanced Individual Training from the mid-1960s to the early 1970s.

A semi-automatic firearm, also called a self-loading or autoloading firearm, is a repeating firearm whose action mechanism automatically loads a following round of cartridge into the chamber (self-loading) and prepares it for subsequent firing, but requires the shooter to manually actuate the trigger in order to discharge each shot. Typically, this involves the weapon's action utilizing the excess energy released during the preceding shot to unlock and move the bolt, extracting and ejecting the spent cartridge case from the chamber, re-cocking the firing mechanism, and loading a new cartridge into the firing chamber, all without input from the user. To fire again, however, the user must actively release the trigger, allow it to "reset", before pulling the trigger again to fire off the next round. As a result, each trigger pull only discharges a single round from a semi-automatic weapon, as opposed to a fully automatic weapon, which will shoot continuously as long as the ammunition is replete and the trigger is kept depressed.

<span class="mw-page-title-main">M1903 Springfield</span> American bolt-action main battle rifle

The M1903 Springfield, officially the United States Rifle, Caliber .30-06, Model 1903, is an American five-round magazine-fed, bolt-action service repeating rifle, used primarily during the first half of the 20th century.

<span class="mw-page-title-main">Pedersen device</span> Semi-automatic rifle

The Pedersen device was an experimental weapon attachment for the M1903 Springfield bolt action rifle that allowed it to fire a .30 caliber (7.62 mm) pistol-type cartridge in semi-automatic mode. The attachment was developed to allow an infantryman to convert "their rifle to a form of submachine gun or automatic rifle" in approximately 15 seconds.

<span class="mw-page-title-main">Remington M1867</span> Rolling-block rifle

The Remington M1867 was a rolling-block rifle, the first rifle using metallic cartridges to be adopted by the Norwegian and Swedish armies. Nominally it had a caliber of 4 decimal lines, but the actual caliber was 3.88 Norwegian decimal lines or 4.1 Swedish decimal lines (12.17 mm), and it fired a rimfire round with a 12.615 mm lead bullet. The 12.17 mm caliber was chosen because the Swedish army had approximately 30,000 new muzzle-loading M1860 and breech-loading M1864 rifles in 12.17 mm caliber in stock, rifles that were suitable for conversion to M1867 rolling-block rifles. With the exception of the first 10,000 rifles and 20,000 actions, which were made by Remington in the US, all Remington M1867 rifles and carbines were made under license in Norway and Sweden, by Kongsberg Vaapenfabrik in Norway, and by Husqvarna Vapenfabriks Aktiebolag and Carl Gustafs stads Gevärsfaktori in Sweden with the two Swedish manufacturers producing about 80% of the weapons.

Blowback is a system of operation for self-loading firearms that obtains energy from the motion of the cartridge case as it is pushed to the rear by expanding gas created by the ignition of the propellant charge.

<span class="mw-page-title-main">Breechblock</span> Part of the firearm action

A breechblock is the part of the firearm action that closes the breech of a breech loading weapon before or at the moment of firing. It seals the breech and contains the pressure generated by the ignited propellant. Retracting the breechblock allows the chamber to be loaded with a cartridge.

<span class="mw-page-title-main">.276 Pedersen</span> American experimental military rifle cartridge

The .276 Pedersen (7×51mm) round was an experimental 7 mm cartridge developed for the United States Army. It was used in the Pedersen rifle and early versions of what would become the M1 Garand.

<span class="mw-page-title-main">Kammerlader</span> Breech-loading rifle

The Kammerlader, or "chamber loader", was the first Norwegian breech-loading rifle, and among the first breech loaders adopted for use by an armed force anywhere in the world. A single-shot black-powder rifle, the kammerlader was operated with a crank mounted on the side of the receiver. This made it much quicker and easier to load than the weapons previously used. Kammerladers quickly gained a reputation for being fast and accurate rifles, and would have been a deadly weapon against massed ranks of infantry.

<span class="mw-page-title-main">Ferdinand Mannlicher</span> Austrian firearms designer

Ferdinand Ritter von Mannlicher was an Austrian engineer and small arms designer. Along with James Paris Lee, Mannlicher was particularly noted for inventing the en-bloc clip charger-loading magazine system. Later, while making improvements to other inventors' prototype designs for rotary-feed magazines, Mannlicher, together with his protégé Otto Schönauer, patented a perfected rotary magazine design, the Mannlicher–Schönauer, which was a commercial and military success.

The Springfield Model 1873 was the first standard-issue breech-loading rifle adopted by the United States Army. The gun, in both full-length and carbine versions, was widely used in subsequent battles against Native Americans.

<span class="mw-page-title-main">M1917 Enfield</span> Bolt-action rifle

The M1917 Enfield, the "American Enfield", formally named "United States Rifle, cal .30, Model of 1917" is an American modification and production of the .303-inch Pattern 1914 Enfield (P14) rifle, which was developed and manufactured during the period 1917–1918. Numerically, it was the main rifle used by the American Expeditionary Forces in Europe during World War I. The Danish Sirius Dog Sled Patrol on Greenland still use the M1917, which performs reliably in Arctic conditions, as their service weapon.

<span class="mw-page-title-main">Springfield Model 1868</span> Breech-loading rifle

The Springfield Model 1868 was one of the rifles which used the trapdoor breechblock design developed by Erskine S. Allin.

<span class="mw-page-title-main">Starr carbine</span> Carbine

The Starr carbine was a breechloading single-shot rifle used by the United States Army. Designed in 1858, the Starr was primarily used by cavalry soldiers in the American Civil War.

The term Joslyn Rifle refers to a series of rifles produced in the mid-19th century. The term is often used to refer specifically to the Joslyn Model 1861/1862, which was the first mass-produced breech-loading rifle produced at the Springfield Armory.

<span class="mw-page-title-main">Trapdoor mechanism</span> Method of reloading and firing a single-shot rifle

In firearms, a trapdoor is a form of breech-loading mechanism for rifles in which a hinged breechblock rotates up and forward, resembling the movement of a trapdoor. The Springfield models 1865 and 1873 were best known for first employing this type of action.

References