The peritrophic matrix (from the prefix peri-, meaning around, and -trophic, referring to nutrition(food)) or peritrophic membrane is a semi-permeable, non-cellular structure which surrounds the food bolus in an organism's midgut. Although they are often found in insects, [1] peritrophic matrixes are found in seven different phyla. [2] The peritrophic matrix serves several functions, including improvement of digestion, protection against mechanical and chemical damage and serving as a barrier to infection by pathogens. [3] Such peritrophic envelopes are also of great ecological importance in marine environments.
The peritrophic matrix is composed of regularly arranged chitin microfibrils, (3–13% of matrix mass), and species specific proteins (20–55%) embedded in a proteoglycan matrix. [4] [5] The peritrophic matrix also includes very small pores which allow for passage of small molecules into and out of the matrix. Thus, due to size limitations (pores reach a maximum size of 10 nm) larger, unwanted materials taken in while feeding are trapped and excreted along with the matrix. [3]
Type I formation of a peritrophic matrix is thought to be the ancestral method, and is found in the majority of organisms that produce a peritrophic matrix. In type I formation, the peritrophic matrix is secreted by the entire midgut, and is formed simply by delamination from the surface of the midgut epithelium. [3] Type I formation usually occurs as a response to feeding, but can also be produced continually. When formed in response to feeding, a single matrix is secreted by the midgut epithelium. This matrix surrounds the food bolus and is later excreted along with unwanted materials present in the food bolus after digestion. When formed continually, as in the insect family Acrididae (locusts), multiple peritrophic matrixes are secreted and surround the food bolus, creating a peritrophic envelope. When no food bolus is present, peritrophic matrixes that are secreted are rapidly passed in excrement. [6]
Type II formation of a peritrophic matrix is considered to be a derived technique, and is found only in some families of the diptera, dermaptera, embioptera and lepidoptera orders of insects. [3] In type II formation, the peritrophic matrix is produced by a specialized group of cells present on the proventriculus of the anterior midgut. [6] Type II formation is a continuous process which is carried out regardless of the presence or absence of a food bolus. Thus, the peritrophic matrix is secreted as an unbroken, concentric, “sleeve like” structure. Although the peritrophic matrix is secreted continually, the presence of a food bolus significantly increases the rate of production. In addition, the presence of a food bolus stimulates the production of multiple matrices which surround the bolus. Following the secretion of a primary peritrophic matrix, subsequent matrices are secreted underneath the first matrix to create a layered peritrophic envelope. [3]
In many organisms the primary function of the peritrophic matrix is to improve digestion. Following feeding, the food bolus is surrounded by the peritrophic matrix, effectively isolating it from the midgut epithelium. This isolation creates two distinct compartments within the midgut, the endoperitrophic space and ectoperitrophic space. This compartmentalization of the midgut provides three general advantages: prevention of non-specific binding of undigested material to the epithelium wall, conservation and concentration of enzymes and substrates and rapid removal of indigestible molecules. [7]
Prevention of non-specific binding is particularly important, as it increases the efficiency of the absorption process by filtering out undigested material which would otherwise block access to the midgut epithelium. Due to the small pore size of the matrix, only small molecules which have been broken down by enzymes or can already be effectively absorbed come in contact with the midgut epithelium. The remaining materials, undigested food and unwanted molecules, are kept within the matrix until they can be broken down by enzymes or excreted. [7]
Concentrating enzymes and food substrate within the endoperitrophic space significantly decreases the time required for digestion in the midgut. In addition, since enzymes are small enough to easily move into and out of the peritrophic matrix, they are rarely lost when the matrix, along with its contents still in the endoperitrophic space, is excreted. A counterflow of fluid in the ectoperitrophic space also helps recycle enzymes, thus maximizing their efficacy. [7]
The presence of a peritrophic matrix significantly simplifies the excretion process. Rather than having to continually sift through a mixture of digestible and unwanted molecules, digestible molecules are quickly broken down by enzymes, removed from the matrix and absorbed. Once the digestive process is completed, unwanted molecules are kept confined within the endoperitrophic space and excreted along with the matrix. [7]
Although the peritrophic matrix is a very thin layer of compounds (type I matrixes reach a maximum thickness of 20 µm, type II matrixes reach a maximum thickness of 2 µm), it can withstand mechanical pressure strains up to 500 mmH2O. [3] This capacity to expand prevents the food bolus from rupturing the delicate epithelial layer while assisting the passage of food through the gut.
Much like indigestible molecules present in the food bolus, many toxins are too large to pass through the small pores of the peritrophic matrix. For example, some insects that are resistant to the insecticide DDT shed large amounts of the toxin in the peritrophic matrix. In addition, some smaller toxins bind with specific surface proteins present in the peritrophic matrix. This binding is particularly important for blood-feeding insects. Heme groups, which are components of hemoglobin, an oxygen carrying protein present in vertebrate blood, act as strong oxidizers in insects. Although this oxidizing agent is safe in vertebrates, it is very damaging to insects. However, heme groups ingested in a blood meal bind to proteins on the peritrophic matrix, enabling insects to safely feed on blood. [8]
Organisms that take in food often infected with pathogens, such as blood-feeding insects, also depend on the peritrophic matrix to filter out the disease agents, which are often too large to fit through the matrix pores. This benefit in particular is thought to be an important driving force in the evolution of peritrophic matrices, as many insects feeding on foods with low pathogen levels lack the ability to produce a peritrophic matrix. This trend is highlighted by mosquitoes, as blood-feeding female mosquitoes produce a peritrophic matrix while nectar-feeding males do not. [9] A significant trend can also be observed in the type of peritrophic matrix produced by blood-feeding insects that are capable of transmitting disease. The majority of blood-feeding insects that are good disease vectors produce a type I matrix. In comparison, blood-feeding insects that produce a type II matrix, which provides a more impenetrable barrier to pathogens, are rarely disease vectors.
Many pathogens are too large to fit through the small pores of the peritrophic matrix, and thus have evolved specialized mechanisms of evading being filtered out by the matrix. Since type I peritrophic matrixes are secreted in response to the presence of a food bolus in the midgut, some pathogens simply invade the epithelial cells before the matrix is excreted. Many helminth microfilaria and arboviruses (arthropod borne viruses) are transmitted to the mosquito in their infective form and are able to immediately invade mosquito tissue. [9] However, other pathogens such as the malaria protozoan must first develop into an infective stage within the midgut before invading other tissues. These pathogens secrete chitinase and proteinase enzymes which dissolve the chitin microfibrils and proteins present in the peritrophic matrix. These enzymes open large holes in the membrane, allowing the pathogen to infect the epithelium and other tissues in the insect. [8]
In cell biology, a vesicle is a structure within or outside a cell, consisting of liquid or cytoplasm enclosed by a lipid bilayer. Vesicles form naturally during the processes of secretion (exocytosis), uptake (endocytosis), and the transport of materials within the plasma membrane. Alternatively, they may be prepared artificially, in which case they are called liposomes. If there is only one phospholipid bilayer, the vesicles are called unilamellar liposomes; otherwise they are called multilamellar liposomes. The membrane enclosing the vesicle is also a lamellar phase, similar to that of the plasma membrane, and intracellular vesicles can fuse with the plasma membrane to release their contents outside the cell. Vesicles can also fuse with other organelles within the cell. A vesicle released from the cell is known as an extracellular vesicle.
The ileum is the final section of the small intestine in most higher vertebrates, including mammals, reptiles, and birds. In fish, the divisions of the small intestine are not as clear and the terms posterior intestine or distal intestine may be used instead of ileum. Its main function is to absorb vitamin B12, bile salts, and whatever products of digestion that were not absorbed by the jejunum.
Digestion is the breakdown of large insoluble food compounds into small water-soluble components so that they can be absorbed into the blood plasma. In certain organisms, these smaller substances are absorbed through the small intestine into the blood stream. Digestion is a form of catabolism that is often divided into two processes based on how food is broken down: mechanical and chemical digestion. The term mechanical digestion refers to the physical breakdown of large pieces of food into smaller pieces which can subsequently be accessed by digestive enzymes. Mechanical digestion takes place in the mouth through mastication and in the small intestine through segmentation contractions. In chemical digestion, enzymes break down food into the small compounds that the body can use.
Saliva is an extracellular fluid produced and secreted by salivary glands in the mouth. In humans, saliva is around 99% water, plus electrolytes, mucus, white blood cells, epithelial cells, enzymes, antimicrobial agents.
Epithelium or epithelial tissue is a thin, continuous, protective layer of compactly packed cells with a little intercellular matrix. Epithelial tissues line the outer surfaces of organs and blood vessels throughout the body, as well as the inner surfaces of cavities in many internal organs. An example is the epidermis, the outermost layer of the skin. Epithelial tissue is one of the four basic types of animal tissue, along with connective tissue, muscle tissue and nervous tissue. These tissues also lack blood or lymph supply. The tissue is supplied by nerves.
An exotoxin is a toxin secreted by bacteria. An exotoxin can cause damage to the host by destroying cells or disrupting normal cellular metabolism. They are highly potent and can cause major damage to the host. Exotoxins may be secreted, or, similar to endotoxins, may be released during lysis of the cell. Gram negative pathogens may secrete outer membrane vesicles containing lipopolysaccharide endotoxin and some virulence proteins in the bounding membrane along with some other toxins as intra-vesicular contents, thus adding a previously unforeseen dimension to the well-known eukaryote process of membrane vesicle trafficking, which is quite active at the host–pathogen interface.
Secretion is the movement of material from one point to another, such as a secreted chemical substance from a cell or gland. In contrast, excretion is the removal of certain substances or waste products from a cell or organism. The classical mechanism of cell secretion is via secretory portals at the plasma membrane called porosomes. Porosomes are permanent cup-shaped lipoprotein structures embedded in the cell membrane, where secretory vesicles transiently dock and fuse to release intra-vesicular contents from the cell.
Cud is a portion of food that returns from a ruminant's stomach to the mouth to be chewed for the second time. More precisely, it is a bolus of semi-degraded food regurgitated from the reticulorumen of a ruminant. Cud is produced during the physical digestive process of rumination.
In cell biology, a phagosome is a vesicle formed around a particle engulfed by a phagocyte via phagocytosis. Professional phagocytes include macrophages, neutrophils, and dendritic cells (DCs).
Extracellular phototropic digestion is a process in which saprobionts feed by secreting enzymes through the cell membrane onto the food. The enzymes catalyze the digestion of the food ie diffusion, transport, osmotrophy or phagocytosis. Since digestion occurs outside the cell, it is said to be extracellular. It takes place either in the lumen of the digestive system, in a gastric cavity or other digestive organ, or completely outside the body. During extracellular digestion, food is broken down outside the cell either mechanically or with acid by special molecules called enzymes. Then the newly broken down nutrients can be absorbed by the cells nearby. Humans use extracellular digestion when they eat. Their teeth grind the food up, enzymes and acid in the stomach liquefy it, and additional enzymes in the small intestine break the food down into parts their cells can use. Extracellular digestion is a form of digestion found in all saprobiontic annelids, crustaceans, arthropods, lichens and chordates, including vertebrates.
The innate immune system or nonspecific immune system is one of the two main immunity strategies in vertebrates. The innate immune system is an alternate defense strategy and is the dominant immune system response found in plants, fungi, prokaryotes, and invertebrates.
Gastrointestinal physiology is the branch of human physiology that addresses the physical function of the gastrointestinal (GI) tract. The function of the GI tract is to process ingested food by mechanical and chemical means, extract nutrients and excrete waste products. The GI tract is composed of the alimentary canal, that runs from the mouth to the anus, as well as the associated glands, chemicals, hormones, and enzymes that assist in digestion. The major processes that occur in the GI tract are: motility, secretion, regulation, digestion and circulation. The proper function and coordination of these processes are vital for maintaining good health by providing for the effective digestion and uptake of nutrients.
Insect physiology includes the physiology and biochemistry of insect organ systems.
The proventriculus is part of the digestive system of birds. An analogous organ exists in invertebrates and insects.
The intestinal epithelium is the single cell layer that forms the luminal surface (lining) of both the small and large intestine (colon) of the gastrointestinal tract. Composed of simple columnar epithelium its main functions are absorption, and secretion. Useful substances are absorbed into the body, and the entry of harmful substances is restricted. Secretions include mucins, and peptides.
Haemozoin is a disposal product formed from the digestion of blood by some blood-feeding parasites. These hematophagous organisms such as malaria parasites, Rhodnius and Schistosoma digest haemoglobin and release high quantities of free heme, which is the non-protein component of haemoglobin. Heme is a prosthetic group consisting of an iron atom contained in the center of a heterocyclic porphyrin ring. Free heme is toxic to cells, so the parasites convert it into an insoluble crystalline form called hemozoin. In malaria parasites, hemozoin is often called malaria pigment.
Every organism requires energy to be active. However, to obtain energy from its outside environment, cells must not only retrieve molecules from their surroundings but also break them down. This process is known as intracellular digestion. In its broadest sense, intracellular digestion is the breakdown of substances within the cytoplasm of a cell. In detail, a phagocyte's duty is obtaining food particles and digesting it in a vacuole. For example, following phagocytosis, the ingested particle fuses with a lysosome containing hydrolytic enzymes to form a phagolysosome; the pathogens or food particles within the phagosome are then digested by the lysosome's enzymes.
Anopheles albimanus is a species of mosquito in the order Diptera. It is found in coastal Central and South America, the Caribbean, and Mexico. It is a generalist species and capable of wide dispersion. A. albimanus is a common malaria vector.
The human digestive system consists of the gastrointestinal tract plus the accessory organs of digestion. Digestion involves the breakdown of food into smaller and smaller components, until they can be absorbed and assimilated into the body. The process of digestion has three stages: the cephalic phase, the gastric phase, and the intestinal phase.
Lutzomyia longipalpis is a species complex of sandfly belonging to the family Psychodidae. This species is primarily present in Central and South America, but has also appeared in Mexico. There have been reports of L. longipalpis as far south as Argentina, as they are found in a wide variety of ecological conditions. Both males and females feed on sugars from plants and aphids, but only adult females feed on the blood of other mammals. The species has recently begun appearing in urban areas throughout Brazil, and serves as a key vessel for the propagation of the parasite Leishmania infantum. The presence of these flies appears to be strongly correlated to the presence of domestic chickens in Latin America. The first major urban outbreak of the lethal Visceral leishmanias epidemic was detected in Teresina, Piauí State in the early 1980s following a massive planting of acacias.