Perpetuant

Last updated

In mathematical invariant theory, a perpetuant is informally an irreducible covariant of a form or infinite degree. More precisely, the dimension of the space of irreducible covariants of given degree and weight for a binary form stabilizes provided the degree of the form is larger than the weight of the covariant, and the elements of this space are called perpetuants. Perpetuants were introduced and named by Sylvester ( 1882 ,p.105). [1] MacMahon ( 1884 , 1885 , 1894 ) [2] [3] [4] and Stroh ( 1890 ) [5] classified the perpetuants. Elliott (1907) describes the early history of perpetuants and gives an annotated bibliography. [6]

MacMahon conjectured and Stroh proved that the dimension of the space of perpetuants of degree n>2 and weight w is the coefficient of xw of

For n=1 there is just one perpetuant, of weight 0, and for n=2 the number is given by the coefficient of xw of x2/(1-x2).

There are very few papers after about 1910 discussing perpetuants; Littlewood [7] is one of the few exceptions. (Kraft&Procesi  2020 ) exhibited an explicit base of the space of perpetuants. [8]

References

  1. Sylvester, James Joseph (1882), "On Subvariants, i.e. Semi-Invariants to Binary Quantics of an Unlimited Order", American Journal of Mathematics , 5 (1), The Johns Hopkins University Press: 79–136, doi:10.2307/2369536, ISSN   0002-9327, JSTOR   2369536
  2. MacMahon, P. A. (1884), "On Perpetuants", American Journal of Mathematics , 7 (1), The Johns Hopkins University Press: 26–46, doi:10.2307/2369457, ISSN   0002-9327, JSTOR   2369457
  3. MacMahon, P. A. (1885), "A Second Paper on Perpetuants", American Journal of Mathematics , 7 (3), The Johns Hopkins University Press: 259–263, doi:10.2307/2369271, ISSN   0002-9327, JSTOR   2369271
  4. MacMahon, P. A. (1894), "The Perpetuant Invariants of Binary Quantics", Proc. London Math. Soc., 26 (1): 262–284, doi:10.1112/plms/s1-26.1.262
  5. Stroh, E. (1890), "Ueber die symbolische Darstellung der Grundsyzyganten einer binären Form sechster Ordnung und eine Erweiterung der Symbolik von Clebsch" , Mathematische Annalen , 36 (2), Springer Berlin / Heidelberg: 262–303, doi:10.1007/BF01207843, S2CID   121641107
  6. Elliott, Edwin Bailey (1907), "On Perpetuants and Contra-Perpetuants" , Proc. London Math. Soc., 4 (1): 228–246, doi:10.1112/plms/s2-4.1.228
  7. "Invariant theory, tensors and group characters". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 239 (807): 305–365. 1944-02-04. doi:10.1098/rsta.1944.0001. ISSN   0080-4614.
  8. Kraft, Hanspeter; Procesi, Claudio (2020-03-11). "Perpetuants: A Lost Treasure". International Mathematics Research Notices. 2021 (5): 3597–3632. arXiv: 1810.01131 . doi:10.1093/imrn/rnaa032. ISSN   1073-7928.

Further reading