Philip A. Beachy

Last updated
Philip Beachy
Born
Philip Arden Beachy

(1958-10-25) October 25, 1958 (age 63)
Alma mater
Known for Hedgehog signaling pathway [1]
Awards NAS Award in Molecular Biology (1998)
March of Dimes Prize in Developmental Biology (2008)
Keio Medical Science Prize (2011)
Scientific career
Fields Biochemistry
Institutions
Thesis The UBX Domain in the Bithorax Complex of Drosophila  (1986)
Doctoral advisor David Hogness [2]
Website

Philip Arden Beachy (born October 25, 1958) [3] is Ernest and Amelia Gallo Professor at Stanford University School of Medicine in Palo Alto, California and an Associate at Stanford's Institute of Stem Cell Biology and Regenerative Medicine. [2] [4] [5]

Contents

Early life

Beachy was born in Red Lake, Ontario, on October 25, 1958. [6] Beachy spent eight of his early years of life in the hills of central Puerto Rico. His father was a pastor of a rural church. He attended a school taught in Spanish during the day and then learned to read and write English once he came home from school. At nine, Beachy and his family returned to their home base of Goshen, Indiana where he began attending public school. At the early age of 16, Beachy headed off to Goshen College which was very close to home. At this time, Beachy still did not know of his love for science. “Unlike many people who knew they were going to be scientists from a very early age, I didn't decide that I would try to become a scientist until fairly late on in college,” he says. [2]

Education

Beachy received his bachelor's degree in natural sciences at Goshen College. Beachy first envisioned himself as a doctor, but after his first year of college, he decided against pursuing that career. He then decided to focus on biological research. He became interested in this field after reading a serialized form of Horace Freeland Judson's book, The Eighth Day of Creation in The New Yorker. "Reading those articles got me excited about molecular biology," says Beachy. After graduating, he decided to take chemistry courses and do more research at the nearby South Bend campus of Indiana University. A year later, he decided to attend graduate school at Stanford University. There, he studied the molecular genetics behind fruit fly development with David Hogness. [2] [5] Beachy earned his Ph.D in biochemistry in 1986 at Stanford for research into the UBX protein domain.

Career

Visually representation of the hedgehog signaling pathway Signal transduction v1.png
Visually representation of the hedgehog signaling pathway
Another example of a hedgehog signaling pathway
Concentration gradient of sonic hedgehog gene Wnt image.jpg
Concentration gradient of sonic hedgehog gene

After receiving his Ph.D, he began working at the Carnegie Institution's Department of Embryology in Baltimore for two years. After his short time there, he accepted a faculty position at the Johns Hopkins University School of Medicine. Beachy began focusing on the Drosophila hedgehog gene, for which he's known for, in 1990. The gene's name originated because fly embryos look spikey if the hedgehog gene is faulty or mutated. The hedgehog gene's main function is to create protein signals in specific cells. These signals, in turn, allow for the formation of embryonic tissues. They do this by instructing neighboring cells to become a certain type of differentiated cell or to simply divide. In other words, this gene is responsible for the development of the appendages and body segments in Drosophila or fruit flies. Humans and other invertebrates have hedgehog genes that behave slightly different than the same gene in the fruit fly. In vertebrates, the hedgehog gene codes for the fingers and toes on the limbs. It also functions in organizing the brain and the spinal cord. Consequently, mutated hedgehog genes often cause birth defects. Also, if it is activated later in life, certain cancers can be triggered and begin to spread. [5]

In 2006, Beachy moved from Johns Hopkins to Stanford University's Department of Developmental Biology and its Institute for Stem Cell Biology and Regenerative Medicine. He is interested in the function of Hedgehog proteins and other extracellular signals in morphogenesis (pattern formation) and in injury repair and regeneration (pattern maintenance), in particular the normal roles of such signals in stem cell physiology and their abnormal roles in the formation and expansion of cancer stem cells. He is also interested in how the distribution of such signals is regulated in tissues, how cells perceive and respond to distinct concentrations of signals, and how such signaling pathways arose in evolution. [5]

Research

Beachy's research focuses on understanding the molecular mechanisms behind the growth of multicellular embryos, especially the role of the Hedgehog signaling pathway. [7] [8] [9]

Awards and honors

Beachy has received numerous awards and prizes for his work, including the Outstanding Young Scientist Award from the Maryland Academy of Sciences in 1997 and the National Academy of Sciences Award in Molecular Biology in 1998. In 2008, Beachy received the March of Dimes Prize in Developmental Biology jointly with Cliff Tabin. [10] In 2011, Beachy received the Keio Medical Science Prize.

Beachy was elected a member of the United States National Academy of Sciences in 2002, and a Fellow of the American Academy of Arts and Sciences (2003). [11]

Personal life

Beachy is the brother of the historian, Robert M. Beachy, and a cousin of biologist Roger N. Beachy and author Stephen Beachy.

Related Research Articles

p53 Mammalian protein found in Homo sapiens

Tumor protein P53, also known as p53, cellular tumor antigen p53, the Guardian of the Genome, phosphoprotein p53, tumor suppressor p53, antigen NY-CO-13, or transformation-related protein 53 (TRP53), is any isoform of a protein encoded by homologous genes in various organisms, such as TP53 (humans) and Trp53 (mice). The p53 proteins are crucial in vertebrates, where they prevent cancer formation. As such, p53 has been described as "the guardian of the genome" because of its role in conserving stability by preventing genome mutation. Hence TP53 is classified as a tumor suppressor gene.

<span class="mw-page-title-main">Sonic hedgehog protein</span> Signaling molecule in animals

Sonic hedgehog protein(SHH) is encoded for by the SHH gene. The protein is named after the character Sonic the Hedgehog.

<span class="mw-page-title-main">Ras GTPase</span> GTP-binding proteins functioning on cell-cycle regulation

Ras, from "Rat sarcoma virus", is a family of related proteins that are expressed in all animal cell lineages and organs. All Ras protein family members belong to a class of protein called small GTPase, and are involved in transmitting signals within cells. Ras is the prototypical member of the Ras superfamily of proteins, which are all related in three-dimensional structure and regulate diverse cell behaviours.

<span class="mw-page-title-main">Paracrine signaling</span>

Paracrine signaling is a form of cell signaling, a type of cellular communication in which a cell produces a signal to induce changes in nearby cells, altering the behaviour of those cells. Signaling molecules known as paracrine factors diffuse over a relatively short distance, as opposed to cell signaling by endocrine factors, hormones which travel considerably longer distances via the circulatory system; juxtacrine interactions; and autocrine signaling. Cells that produce paracrine factors secrete them into the immediate extracellular environment. Factors then travel to nearby cells in which the gradient of factor received determines the outcome. However, the exact distance that paracrine factors can travel is not certain.

<span class="mw-page-title-main">Notch signaling pathway</span> Series of molecular signals

The Notch signaling pathway is a highly conserved cell signaling system present in most animals. Mammals possess four different notch receptors, referred to as NOTCH1, NOTCH2, NOTCH3, and NOTCH4. The notch receptor is a single-pass transmembrane receptor protein. It is a hetero-oligomer composed of a large extracellular portion, which associates in a calcium-dependent, non-covalent interaction with a smaller piece of the notch protein composed of a short extracellular region, a single transmembrane-pass, and a small intracellular region.

<span class="mw-page-title-main">Leukemia inhibitory factor</span> Mammalian protein found in Homo sapiens

Leukemia inhibitory factor, or LIF, is an interleukin 6 class cytokine that affects cell growth by inhibiting differentiation. When LIF levels drop, the cells differentiate.

<span class="mw-page-title-main">GLI3</span> Protein-coding gene in the species Homo sapiens

Zinc finger protein GLI3 is a protein that in humans is encoded by the GLI3 gene.

<span class="mw-page-title-main">Peter Walter</span> German-American molecular biologist and biochemist

Peter Walter is a German-American molecular biologist and biochemist and is Director of the Bay Area Institute of Science at Altos Labs, Professor at the University of California, San Francisco (UCSF). He was a Howard Hughes Medical Institute (HHMI) Investigator until 2022.

The Hedgehog signaling pathway is a signaling pathway that transmits information to embryonic cells required for proper cell differentiation. Different parts of the embryo have different concentrations of hedgehog signaling proteins. The pathway also has roles in the adult. Diseases associated with the malfunction of this pathway include cancer.

<span class="mw-page-title-main">Smoothened</span> Protein-coding gene in the species Homo sapiens

Smoothened is a protein that in humans is encoded by the SMO gene. Smoothened is a Class Frizzled G protein-coupled receptor that is a component of the hedgehog signaling pathway and is conserved from flies to humans. It is the molecular target of the natural teratogen cyclopamine. It also is the target of vismodegib, the first hedgehog pathway inhibitor to be approved by the U.S. Food and Drug Administration (FDA).

Christopher Francis Higgins is a British molecular biologist, geneticist, academic and scientific advisor. He was the Vice-Chancellor of Durham University from 2007 to 2014. He took early retirement on 30 September 2014, following a discussion at Senate on limiting the powers of the Vice Chancellor. He was previously the director of the MRC Clinical Sciences Centre and Head of Division in the Faculty of Medicine at Imperial College London.

<span class="mw-page-title-main">Limb development</span>

Limb development in vertebrates is an area of active research in both developmental and evolutionary biology, with much of the latter work focused on the transition from fin to limb.

<span class="mw-page-title-main">Indian hedgehog (protein)</span>

Indian hedgehog homolog (Drosophila), also known as IHH, is a protein which in humans is encoded by the IHH gene. This cell signaling protein is in the hedgehog signaling pathway. The several mammalian variants of the Drosophila hedgehog gene have been named after the various species of hedgehog; the Indian hedgehog is honored by this one. The gene is not specific to Indian hedgehogs.

<span class="mw-page-title-main">Cytoneme</span>

Cytonemes are thin, cellular projections that are specialized for exchange of signaling proteins between cells. Cytonemes emanate from cells that make signaling proteins, extending directly to cells that receive signaling proteins. Cytonemes also extend directly from cells that receive signaling proteins to cells that make them.

<span class="mw-page-title-main">Matthew P. Scott</span>

Matthew P. Scott is an American biologist who was the tenth president of the Carnegie Institution for Science. While at Stanford University, Scott studied how embryonic and later development is governed by proteins that control gene activity and cell signaling processes. He co- discovered homeobox genes in Drosophila melanogaster working with Amy J. Weiner at Indiana University.

Michael B. Elowitz is a biologist and professor of Biology, Bioengineering, and Applied Physics at the California Institute of Technology, and investigator at the Howard Hughes Medical Institute. In 2007 he was the recipient of the Genius grant, better known as the MacArthur Fellows Program for the design of a synthetic gene regulatory network, the Repressilator, which helped initiate the field of synthetic biology. In addition, he showed, for the first time, how inherently random effects, or 'noise', in gene expression could be detected and quantified in living cells, leading to a growing recognition of the many roles that noise plays in living cells. His work in Synthetic Biology and Noise represent two foundations of the field of Systems Biology.

Philip William Ingham FRS, FMedSci, Hon. FRCP is a British geneticist, currently the Toh Kian Chui Distinguished Professor at the Lee Kong Chian School of Medicine, a partnership between Nanyang Technological University, Singapore and Imperial College, London. Previously, he was the inaugural Director of the Living Systems Institute at the University of Exeter, UK and prior to that was Vice Dean, Research at the Lee Kong Chian School of Medicine.

<span class="mw-page-title-main">Helen Blau</span> American biochemist

Helen Margaret Blau is an American biologist and the Donald E. and Delia B. Baxter Foundation Professor and Director of the Baxter Laboratory for Stem Cell Biology at Stanford University School of Medicine. She is known for establishing the reversibility of the mammalian differentiated state. Her landmark papers showed that nuclear reprogramming and the activation of novel programs of gene expression were possible, overturning the prevailing view that the differentiated state was fixed and irreversible. Her discoveries opened the door for cellular reprogramming and its application to stem cell biology.

<span class="mw-page-title-main">Clifford Tabin</span> American geneticist

Clifford James Tabin is chairman of the Department of Genetics at Harvard Medical School.

<span class="mw-page-title-main">Roger Brent</span> American biologist

Roger Brent is an American biologist known for his work on gene regulation and systems biology. He studies the quantitative behaviors of cell signaling systems and the origins and consequences of variation in them. He is Full Member in the Division of Basic Sciences at the Fred Hutchinson Cancer Research Center and an Affiliate Professor of Genome Sciences at the University of Washington.

References

  1. Porter, J. A.; Young, K. E.; Beachy, P. A. (1996). "Cholesterol Modification of Hedgehog Signaling Proteins in Animal Development". Science. 274 (5285): 255–9. Bibcode:1996Sci...274..255P. doi:10.1126/science.274.5285.255. PMID   8824192. S2CID   11125394.
  2. 1 2 3 4 Marino, M (2004). "Biography of Philip A. Beachy". Proceedings of the National Academy of Sciences. 101 (52): 17897–9. doi: 10.1073/pnas.0408740102 . PMC   539818 . PMID   15611474.
  3. Marquis Who's Who TM. Marquis Who's Who, 2008.
  4. Beachy, P. A.; Karhadkar, S. S.; Berman, D. M. (2004). "Tissue repair and stem cell renewal in carcinogenesis". Nature. 432 (7015): 324–31. Bibcode:2004Natur.432..324B. doi:10.1038/nature03100. PMID   15549094. S2CID   4428056.
  5. 1 2 3 4 "Philip A. Beachy, PhD". HHMI.org. Retrieved 2014-06-17.
  6. "Philip A. Beachy - Stanford University". Yatedo.com. 1958-10-25. Retrieved 2014-06-17.
  7. Chiang, C; Litingtung, Y; Lee, E; Young, K. E.; Corden, J. L.; Westphal, H; Beachy, P. A. (1996). "Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function". Nature. 383 (6599): 407–13. Bibcode:1996Natur.383..407C. doi:10.1038/383407a0. PMID   8837770. S2CID   4339131.
  8. Berman, D. M.; Karhadkar, S. S.; Maitra, A; Montes De Oca, R; Gerstenblith, M. R.; Briggs, K; Parker, A. R.; Shimada, Y; Eshleman, J. R.; Watkins, D. N.; Beachy, P. A. (2003). "Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours". Nature. 425 (6960): 846–51. Bibcode:2003Natur.425..846B. doi:10.1038/nature01972. PMID   14520411. S2CID   2877022.
  9. Taipale, J; Beachy, P. A. (2001). "The Hedgehog and Wnt signalling pathways in cancer". Nature. 411 (6835): 349–54. Bibcode:2001Natur.411..349T. doi:10.1038/35077219. PMID   11357142. S2CID   4414768.
  10. Anon (2008). "An Interview With... Cliff Tabin". Nature Reviews Genetics. 9 (6): 420. doi:10.1038/nrg2863. PMID   18504824. S2CID   45619315.
  11. "Book of Members, 1780-2010: Chapter B" (PDF). American Academy of Arts and Sciences. Retrieved May 28, 2011.