Phosphatidylinositol transfer protein

Last updated
2a1l.png
Phosphatidylinositol transfer protein, beta isoform
Identifiers
SymbolIP_trans
Pfam PF02121
InterPro IPR001666
SCOPe 1fvz / SUPFAM
OPM superfamily 138
OPM protein 2a1l
CDD cd07815

Phosphatidylinositol transfer protein (PITP) or priming in exocytosis protein 3 (PEP3) is a ubiquitous cytosolic domain involved in transport of phospholipids from their site of synthesis in the endoplasmic reticulum and Golgi to other cell membranes. [1] [2]

Contents

Biological function

PITP has been also shown to be an essential component of the polyphosphoinositide synthesis machinery and is hence required for proper signalling by epidermal growth factor and f-Met-Leu-Phe, as well as for exocytosis. The role of PITP in polyphosphoinositide synthesis may also explain its involvement in intracellular vesicular traffic. [1]

Structure and evolution

Along with the structurally unrelated Sec14p family (found in Pfam PF00650), this family can bind/exchange one molecule of phosphatidylinositol (PI) or phosphatidylcholine (PC) and thus aids their transfer between different membrane compartments. There are three sub-families - all share an N-terminal PITP-like domain, whose sequence is highly conserved. It is described as consisting of three regions. The N-terminal region is thought to bind the lipid and contains two helices and an eight-stranded, mostly antiparallel beta-sheet. An intervening loop region, which is thought to play a role in protein-protein interactions, separates this from the C-terminal region, which exhibits the greatest sequence variation and may be involved in membrane binding. This motif marks PITP as part of the larger SRPBCC (START/RHOalphaC/PITP/Bet v1/CoxG/CalC) domain superfamily.[ citation needed ]

PITP alpha (UniProt Q00169 ) has a 16-fold greater affinity for PI than PC. Together with PITP beta (UniProt P48739 ), it is expressed ubiquitously in all tissues. [3]

Human proteins

The family of human phosphatidylinositol transfer proteins has several members:

Related Research Articles

Peripheral membrane protein membrane proteins that adhere temporarily to membranes with which they are associated

Peripheral membrane proteins are membrane proteins that adhere only temporarily to the biological membrane with which they are associated. These proteins attach to integral membrane proteins, or penetrate the peripheral regions of the lipid bilayer. The regulatory protein subunits of many ion channels and transmembrane receptors, for example, may be defined as peripheral membrane proteins. In contrast to integral membrane proteins, peripheral membrane proteins tend to collect in the water-soluble component, or fraction, of all the proteins extracted during a protein purification procedure. Proteins with GPI anchors are an exception to this rule and can have purification properties similar to those of integral membrane proteins.

Laminin Protein in the extracellular matrix

Laminins are high-molecular weight proteins of the extracellular matrix. They are a major component of the basal lamina, a protein network foundation for most cells and organs. The laminins are an important and biologically active part of the basal lamina, influencing cell differentiation, migration, and adhesion.

Phosphoinositide phospholipase C family of eukaryotic intracellular enzymes

Phosphoinositide phospholipase C (PLC) is a family of eukaryotic intracellular enzymes that play an important role in signal transduction processes. These enzymes belong to a larger superfamily of Phospholipase C. Other families of phospholipase C enzymes have been identified in bacteria and trypanosomes. Phospholipases C are phosphodiesterases.

Phosphatidylinositol (3,4,5)-trisphosphate chemical compound

Phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3), abbreviated PIP3, is the product of the class I phosphoinositide 3-kinases (PI 3-kinases) phosphorylation of phosphatidylinositol (4,5)-bisphosphate (PIP2). It is a phospholipid that resides on the plasma membrane.

Phosphatidylinositol 4,5-bisphosphate chemical compound

Phosphatidylinositol 4,5-bisphosphate or PtdIns(4,5)P2, also known simply as PIP2 or PI(4,5)P2, is a minor phospholipid component of cell membranes. PtdIns(4,5)P2 is enriched at the plasma membrane where it is a substrate for a number of important signaling proteins.

C2 domain

A C2 domain is a protein structural domain involved in targeting proteins to cell membranes. The typical version (PKC-C2) has a beta-sandwich composed of 8 β-strands that co-ordinates two or three calcium ions, which bind in a cavity formed by the first and final loops of the domain, on the membrane binding face. Many other C2 domain families don't have calcium binding activity.

FYVE domain InterPro Domain

In molecular biology the FYVE zinc finger domain is named after the four cysteine-rich proteins: Fab 1, YOTB, Vac 1, and EEA1, in which it has been found. FYVE domains bind Phosphatidylinositol 3-phosphate, in a way dependent on its metal ion coordination and basic amino acids. The FYVE domain inserts into cell membranes in a pH-dependent manner. The FYVE domain has been connected to vacuolar protein sorting and endosome function.

CRAL-TRIO domain protein domain

CRAL-TRIO domain is a protein structural domain that binds small lipophilic molecules. This domain is named after cellular retinaldehyde-binding protein (CRALBP) and TRIO guanine exchange factor.

Electron-transferring flavoprotein

An electron transfer flavoprotein (ETF) or electron transfer flavoprotein complex (CETF) is a flavoprotein located on the matrix face of the inner mitochondrial membrane and functions as a specific electron acceptor for primary dehydrogenases, transferring the electrons to terminal respiratory systems such as electron-transferring-flavoprotein dehydrogenase. They can be functionally classified into constitutive, "housekeeping" ETFs, mainly involved in the oxidation of fatty acids, and ETFs produced by some prokaryotes under specific growth conditions, receiving electrons only from the oxidation of specific substrates.

Phosphatidylinositol transfer protein, alpha protein-coding gene in the species Homo sapiens

Phosphatidylinositol transfer protein alpha isoform is a protein that in humans is encoded by the PITPNA gene.

Phospholipase C class of enzymes; hydrolases that cleave phospholipids before the phosphate

Phospholipase C (PLC) is a class of membrane-associated enzymes that cleave phospholipids just before the phosphate group (see figure). It is most commonly taken to be synonymous with the human forms of this enzyme, which play an important role in eukaryotic cell physiology, in particular signal transduction pathways. There are thirteen kinds of mammalian phospholipase C that are classified into six isotypes (β, γ, δ, ε, ζ, η) according to structure. Each PLC has unique and overlapping controls over expression and subcellular distribution. Activators of each PLC vary, but typically include heterotrimeric G protein subunits, protein tyrosine kinases, small G proteins, Ca2+, and phospholipids.

PI4KB protein-coding gene in the species Homo sapiens

Phosphatidylinositol 4-kinase beta is an enzyme that in humans is encoded by the PI4KB gene.

Oxysterol-binding protein InterPro Family

The oxysterol-binding protein (OSBP)-related proteins (ORPs) are a family of lipid transfer proteins (LTPs). Concretely, they constitute a family of sterol and phosphoinositide binding and transfer proteins in eukaryotes that are conserved from yeast to humans. They are lipid-binding proteins implicated in many cellular processes related with oxysterol, including signaling, vesicular trafficking, lipid metabolism, and nonvesicular sterol transport.

PI4K2A protein-coding gene in the species Homo sapiens

Phosphatidylinositol 4-kinase 2-alpha is an enzyme that in humans is encoded by the PI4K2A gene.

AUP1 protein-coding gene in the species Homo sapiens

Ancient ubiquitous protein 1 is a protein that in humans is encoded by the AUP1 gene.

StAR-related transfer domain

START is a lipid-binding domain in StAR, HD-ZIP and signalling proteins. The archetypical domain is found in StAR, a mitochondrial protein that is synthesized in steroid-producing cells. StAR initiates steroid production by mediating the delivery of cholesterol to the first enzyme in steroidogenic pathway. The START domain is critical for this activity, perhaps through the binding of cholesterol. Following the discovery of StAR, 15 START-domain-containing proteins were subsequently identified in vertebrates as well as other that are related.

Vacuolar segregation protein 7 is a protein that in yeast is encoded by the VAC7 gene. VAC7 is a component of the PI(3,5)P2 regulatory complex, composed of ATG18, FIG4, FAB1, VAC14 and VAC7.

The insulin transduction pathway is a biochemical pathway by which insulin increases the uptake of glucose into fat and muscle cells and reduces the synthesis of glucose in the liver and hence is involved in maintaining glucose homeostasis. This pathway is also influenced by fed versus fasting states, stress levels, and a variety of other hormones.

NDUFB3 protein-coding gene in the species Homo sapiens

NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3, 12kDa is a protein that in humans is encoded by the NDUFB3 gene. NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 3, 12kDa is an accessory subunit of the NADH dehydrogenase (ubiquinone) complex, located in the mitochondrial inner membrane. It is also known as Complex I and is the largest of the five complexes of the electron transport chain. Mutations in this gene contribute to mitochondrial complex I deficiency.

NDUFB4 protein-coding gene in the species Homo sapiens

NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 4, 15kDa is a protein that in humans is encoded by the NDUFB4 gene. The NDUFB4 protein is a subunit of NADH dehydrogenase (ubiquinone), which is located in the mitochondrial inner membrane and is the largest of the five complexes of the electron transport chain.

References

  1. 1 2 Liscovitch M, Cantley LC (1995). "Signal transduction and membrane traffic: the PITP/phosphoinositide connection". Cell. 81 (5): 659–662. doi: 10.1016/0092-8674(95)90525-1 . PMID   7774006.
  2. Hay JC, Martin TF (December 1993). "Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca(2+)-activated secretion". Nature. 366 (6455): 572–5. Bibcode:1993Natur.366..572H. doi:10.1038/366572a0. PMID   8255295. S2CID   4348488.
  3. Hsuan J, Cockcroft S (2001). "The PITP family of phosphatidylinositol transfer proteins". Genome Biol. 2 (9): REVIEWS3011. doi:10.1186/gb-2001-2-9-reviews3011. PMC   138965 . PMID   11574064.
This article incorporates text from the public domain Pfam and InterPro: IPR001666