A plasmid partition system is a mechanism that ensures the stable inheritance of plasmids during bacterial cell division. Each plasmid has its independent replication system which controls the number of copies of the plasmid in a cell. The higher the copy number, the more likely the two daughter cells will contain the plasmid. Generally, each molecule of plasmid diffuses randomly, so the probability of having a plasmid-less daughter cell is 21−N, where N is the number of copies. For instance, if there are 2 copies of a plasmid in a cell, there is 50% chance of having one plasmid-less daughter cell. However, high-copy number plasmids have a cost for the hosting cell. This metabolic burden is lower for low-copy plasmids, but those have a higher probability of plasmid loss after a few generations. To control vertical transmission of plasmids, in addition to controlled-replication systems, bacterial plasmids use different maintenance strategies, such as multimer resolution systems, post-segregational killing systems (addiction modules), and partition systems. [1]
Plasmid copies are paired around a centromere-like site and then separated in the two daughter cells. Partition systems involve three elements, organized in an auto-regulated operon: [2]
The centromere-like DNA site is required in cis for plasmid stability. It often contains one or more inverted repeats which are recognized by multiple CBPs. This forms a nucleoprotein complex termed the partition complex. This complex recruits the motor protein, which is a nucleotide triphosphatase (NTPase). The NTPase uses energy from NTP binding and hydrolysis to directly or indirectly move and attach plasmids to specific host location (e.g. opposite bacterial cell poles).
The partition systems are divided in four types, based primarily on the type of NTPases: [3] [4]
Type | Motor protein (NTPase) | Centromere binding protein (CBP) | Centromere-like binding site | Other proteins |
---|---|---|---|---|
Type I | ParA | ParB or ParG | parS (Ia) or parC (Ib) | |
Type II | ParM | ParR | parC | |
Type III | TubZ | TubR | tubS | TubY |
This system is also used by most bacteria for chromosome segregation. [3] Type I partition systems are composed of an ATPase which contains Walker motifs and a CBP which is structurally distinct in type Ia and Ib. ATPases and CBP from type Ia are longer than the ones from type Ib, but both CBPs contain an arginine finger in their N-terminal part. [5] [1] [6] ParA proteins from different plasmids and bacterial species show 25 to 30% of sequence identity to the protein ParA of the plasmid P1. [7] The partition of type I system uses a "diffusion-ratchet" mechanism. This mechanism works as follows: [8]
There are likely to be differences in the details of type I mechanisms. [6]
Type 1 partition has been mathematically modelled with variations in the mechanism described above. [16] [17] [18] [19]
The CBP of this type consists in three domains: [6]
The CBP of this type, also known as parG is composed of: [6]
For this type, the parS site is called parC.
This system is the best understood of the plasmid partition system. [6] It is composed of an actin-like ATPAse, ParM, and a CBP called ParR. The centromere like site, parC contains two sets of five 11 base pair direct repeats separated by the parMR promoter. The amino-acid sequence identity can go down to 15% between ParM and other actin-like ATPase. [7] [22]
The mechanism of partition involved here is a pushing mechanism: [23]
The filament of ParM is regulated by the polymerization allowed by the presence the partition complex (ParR-parC), and by the depolymerization controlled by the ATPase activity of ParM.
The type III partition system is the most recently discovered partition system. It is composed of tubulin-like GTPase termed TubZ, and the CBP is termed TubR. Amino-acid sequence identity can go down to 21% for TubZ proteins. [7]
The mechanism is similar to a treadmill mechanism: [24]
The net result being transport of partition complex to the cell pole.
The partition system of the plasmid R388 has been found within the stb operon. This operon is composed of three genes, stbA, stbB and stbC. [25]
The StbA-stbDRs complex may be used to pair plasmid the host chromosome, using indirectly the bacterial partitioning system.
StbA and StbB have opposite but connected effect related to conjugation.
This system has been proposed to be the type IV partition system. [26] It is thought to be a derivative of the type I partition system, given the similar operon organization. This system represents the first evidence for a mechanistic interplay between plasmid segregation and conjugation processes. [26]
pSK1 is a plasmid from Staphylococcus aureus. This plasmid has a partition system determined by a single gene, par, previously known as orf245. This gene does not effect the plasmid copy number nor the grow rate (excluding its implication in a post-segregational killing system). A centromere-like binding sequence is present upstream of the par gene, and is composed of seven direct repeats and one inverted repeat.
FtsZ is a protein encoded by the ftsZ gene that assembles into a ring at the future site of bacterial cell division. FtsZ is a prokaryotic homologue of the eukaryotic protein tubulin. The initials FtsZ mean "Filamenting temperature-sensitive mutant Z." The hypothesis was that cell division mutants of E. coli would grow as filaments due to the inability of the daughter cells to separate from one another. FtsZ is found in almost all bacteria, many archaea, all chloroplasts and some mitochondria, where it is essential for cell division. FtsZ assembles the cytoskeletal scaffold of the Z ring that, along with additional proteins, constricts to divide the cell in two.
Tubulin in molecular biology can refer either to the tubulin protein superfamily of globular proteins, or one of the member proteins of that superfamily. α- and β-tubulins polymerize into microtubules, a major component of the eukaryotic cytoskeleton. It was discovered and named by Hideo Mōri in 1968. Microtubules function in many essential cellular processes, including mitosis. Tubulin-binding drugs kill cancerous cells by inhibiting microtubule dynamics, which are required for DNA segregation and therefore cell division.
The nucleoid is an irregularly shaped region within the prokaryotic cell that contains all or most of the genetic material. The chromosome of a typical prokaryote is circular, and its length is very large compared to the cell dimensions, so it needs to be compacted in order to fit. In contrast to the nucleus of a eukaryotic cell, it is not surrounded by a nuclear membrane. Instead, the nucleoid forms by condensation and functional arrangement with the help of chromosomal architectural proteins and RNA molecules as well as DNA supercoiling. The length of a genome widely varies and a cell may contain multiple copies of it.
A tumour inducing (Ti) plasmid is a plasmid found in pathogenic species of Agrobacterium, including A. tumefaciens, A. rhizogenes, A. rubi and A. vitis.
A colicin is a type of bacteriocin produced by and toxic to some strains of Escherichia coli. Colicins are released into the environment to reduce competition from other bacterial strains. Colicins bind to outer membrane receptors, using them to translocate to the cytoplasm or cytoplasmic membrane, where they exert their cytotoxic effect, including depolarisation of the cytoplasmic membrane, DNase activity, RNase activity, or inhibition of murein synthesis.
fis is an E. coli gene encoding the Fis protein. The regulation of this gene is more complex than most other genes in the E. coli genome, as Fis is an important protein which regulates expression of other genes. It is supposed that fis is regulated by H-NS, IHF and CRP. It also regulates its own expression (autoregulation). Fis is one of the most abundant DNA binding proteins in Escherichia coli under nutrient-rich growth conditions.
The prokaryotic cytoskeleton is the collective name for all structural filaments in prokaryotes. It was once thought that prokaryotic cells did not possess cytoskeletons, but advances in visualization technology and structure determination led to the discovery of filaments in these cells in the early 1990s. Not only have analogues for all major cytoskeletal proteins in eukaryotes been found in prokaryotes, cytoskeletal proteins with no known eukaryotic homologues have also been discovered. Cytoskeletal elements play essential roles in cell division, protection, shape determination, and polarity determination in various prokaryotes.
Segrosomes are protein complexes that ensure accurate segregation (partitioning) of plasmids or chromosomes during bacterial cell division.
In molecular cloning, a vector is any particle used as a vehicle to artificially carry a foreign nucleic sequence – usually DNA – into another cell, where it can be replicated and/or expressed. A vector containing foreign DNA is termed recombinant DNA. The four major types of vectors are plasmids, viral vectors, cosmids, and artificial chromosomes. Of these, the most commonly used vectors are plasmids. Common to all engineered vectors are an origin of replication, a multicloning site, and a selectable marker.
ParM is a prokaryotic actin homologue which provides the force to drive copies of the R1 plasmid to opposite ends of rod shaped bacteria before cytokinesis.
A toxin-antitoxin system consists of a "toxin" and a corresponding "antitoxin", usually encoded by closely linked genes. The toxin is usually a protein while the antitoxin can be a protein or an RNA. Toxin-antitoxin systems are widely distributed in prokaryotes, and organisms often have them in multiple copies. When these systems are contained on plasmids – transferable genetic elements – they ensure that only the daughter cells that inherit the plasmid survive after cell division. If the plasmid is absent in a daughter cell, the unstable antitoxin is degraded and the stable toxic protein kills the new cell; this is known as 'post-segregational killing' (PSK).
Nucleotide-binding protein 2 also known as cytosolic Fe-S cluster assembly factor NUBP2 is a protein that in humans is encoded by the NUBP2 gene.
In molecular biology, the ars operon is an operon found in several bacterial taxon. It is required for the detoxification of arsenate, arsenite, and antimonite. This system transports arsenite and antimonite out of the cell. The pump is composed of two polypeptides, the products of the arsA and arsB genes. This two-subunit enzyme produces resistance to arsenite and antimonite. Arsenate, however, must first be reduced to arsenite before it is extruded. A third gene, arsC, expands the substrate specificity to allow for arsenate pumping and resistance. ArsC is an approximately 150-residue arsenate reductase that uses reduced glutathione (GSH) to convert arsenate to arsenite with a redox active cysteine residue in the active site. ArsC forms an active quaternary complex with GSH, arsenate, and glutaredoxin 1 (Grx1). The three ligands must be present simultaneously for reduction to occur.
The CcdA/CcdB Type II Toxin-antitoxin system is one example of the bacterial toxin-antitoxin (TA) systems that encode two proteins, one a potent inhibitor of cell proliferation (toxin) and the other its specific antidote (antitoxin). These systems preferentially guarantee growth of plasmid-carrying daughter cells in a bacterial population by killing newborn bacteria that have not inherited a plasmid copy at cell division.
The parABS system is a broadly conserved molecular mechanism for plasmid partitioning and chromosome segregation in bacteria. Originally identified as a genetic element required for faithful partitioning of low-copy-number plasmids, it consists of three components: the ParA ATPase, the ParB DNA-binding protein, and the cis-acting parS sequence. The parA and parB genes are typically found in the same operon, with parS elements located within or adjacent to this operon. Collectively, these components function to ensure accurate partitioning of plasmids or whole chromosomes between bacterial daughter cells prior to cell division.
The Min System is a mechanism composed of three proteins MinC, MinD, and MinE used by E. coli as a means of properly localizing the septum prior to cell division. Each component participates in generating a dynamic oscillation of FtsZ protein inhibition between the two bacterial poles to precisely specify the mid-zone of the cell, allowing the cell to accurately divide in two. This system is known to function in conjunction with a second negative regulatory system, the nucleoid occlusion system (NO), to ensure proper spatial and temporal regulation of chromosomal segregation and division.
The MinD protein is one of three proteins encoded by the minB operon and also a part of the ParA family of ATPases. It is required to generate pole to pole oscillations prior to bacterial cell division as a means of specifying the midzone of the cell. It is a peripheral membrane ATPase involved in plasmid partitioning.
The MinE protein is one of three proteins of the Min system encoded by the minB operon required to generate pole to pole oscillations prior to bacterial cell division as a means of specifying the midzone of the cell, as seen in E.coli.
The ParMRC system is a mechanism for sorting DNA plasmids to opposite ends of a bacterial cell during cell division. It has three components: ParM, an actin-like protein that forms a long filament to push two plasmids apart, ParR, which binds the plasmid to ParM and generates the ParM filament, and parC, which is a DNA sequence on the plasmid that anchors ParR to itself.
The locus of enterocyte effacement-encoded regulator (Ler) is a regulatory protein that controls bacterial pathogenicity of enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic Escherichia coli (EHEC). More specifically, Ler regulates the locus of enterocyte effacement (LEE) pathogenicity island genes, which are responsible for creating intestinal attachment and effacing lesions and subsequent diarrhea: LEE1, LEE2, and LEE3. LEE1, 2, and 3 carry the information necessary for a type III secretion system. The transcript encoding the Ler protein is the open reading frame 1 on the LEE1 operon.