Pollen zone

Last updated
Helianthus annuus pollen Helianthus annuus pollen 1.jpg
Helianthus annuus pollen

Pollen zones are a system of subdividing the Last Glacial Period and Holocene paleoclimate using the data from pollen cores. The sequence provides a global chronological structure to a wide variety of researchers, such as geologists, climatologists, geographers and archaeologists, who study the physical and cultural environment of the last 15,000 years.

Contents

History

The palynological aspects of the system were first investigated extensively by the Swedish palynologist Lennart von Post [1] in the years before the First World War. By analysing pollen in core samples taken from peat bogs, von Post noticed that different plant species were represented in bands through the cores.

The differing species and differing quantities of the same species are caused by changes in climate. Von Post was able to confirm the Blytt–Sernander climatic sequence showing fluctuations between warmer and colder periods across thousands of years. He used local peat sequences combined with varve dating to produce a regional climatic chronology for Scandinavia.

In 1940 Harry Godwin began applying von Post's methods to pollen cores from the British Isles to produce the wider European sequence accepted today. It basically expanded the Blytt-Sernander further into the late Pleistocene and refined some of its periods. Following the Second World War, the technique spread to the Americas.

Currently scientists are focusing a repertory of several different methods on core samples in peat, ice, lake and ocean bottoms, and sediments to achieve "high resolution" dating not possible to only one method: carbon dating, dendrochronology, isotope ratios on a number of gases, studies of insects and molluscs, and others. While often doubting the utility of the modified Bytt-Sernander, they seem to confirm and expand it all the more.

Notes on the sequence table

At present nine main pollen zones, I-IX, are defined, based on the work of J. Iversen, published in 1954. These are matched to period names called "biostratigraphic divisions" in the table, which were defined for Denmark by Iverson based on layers in the peat bogs. They represent climatic and biological zones in the peat.

Others have used these names in different senses, such as the 1974 chronozones of J. Mangerud. The sequences in Germany and Sweden are not exactly the same as those in Denmark, inviting scientists there to use the names still differently or make other definitions. Moreover, the names are apt to be used interchangeably for glacials, interglacials, stadial, interstadials, or oscillations, leading some scientists to deplore the lack of system.

The system of the table below covers from around 13,000 BC to the modern day. Dates, given in years BC, are best viewed as being based on uncalibrated C-14 dates, which, when calibrated, would result in much earlier BC dates. For example, an Older Dryas start date of 10,000 BC translates roughly into an uncalibrated BP date of 12,000. Calibrated, that becomes 14,000 BP, 12,000 BC. To obtain quick, on-line calibrations, you may use CalPal.

The dates in the table correspond relatively well to more modern dates for the earlier periods. Larger discrepancies begin at the end of the Boreal. More, and more modern, details on the dating of the periods are given under the article for each one.

The archaeological periods listed only apply to north Europe, and do so approximately. For example, there is no uniform chronozone, "the Bronze Age", which would apply globally or even be of the same dates between north and south Europe.

The geological stages listed are only defined for the British Isles. Scientists use different names for north Europe, south Europe and other regions. However, they are cross-correlated in the articles for the ones listed.

In contrast to glacial periods, these pollen zones are being used to apply globally, with but few exceptions. It is acceptable, for example, to refer to the "Younger Dryas" of Antarctica, which has no pollen of its own. A few scientists disapprove of such uses.

Sequence table

European Pollen Zones
ZoneBiostratigraphic divisionDatesDominant plant typeArchaeological periodsGeological stage
IX Sub-Atlantic 500 BC to presentSpread of grasses and pine and beech woodland Iron Age onwards Flandrian
VIII Sub-Boreal 3000–500 BCMixed oak forest Bronze Age and Iron Age Flandrian
VII Atlantic 5500 -3000 BCMixed oak forest Neolithic and Bronze AgeFlandrian
V and VI Boreal c.7700–5500 BCPine/birch forest and increasing mixed forest Mesolithic Flandrian
IV Pre-Boreal c.8300–7700 BCBirch forestLate Upper Palaeolithic and early–mid Mesolithic Devensian glaciation and Flandrian
III Younger Dryas c. 8800 - 8300 BC Tundra Late Upper PalaeolithicDevensian
II Allerød oscillation c. 9800 - 8800 BCTundra, Park Tundra and birch forestLate Upper PalaeolithicDevensian
Ic Older Dryas c. 10,000 - 9800 BCTundraLate Upper PalaeolithicDevensian
Ib Bølling oscillation c.10,500–10,000 BC Park Tundra Late Upper PalaeolithicDevensian
Ia Oldest Dryas c.13,000–10,500 BCTundraLate Upper Palaeolithic Devensian

Related Research Articles

The Holocene is the current geological epoch. It began approximately 9,700 years before the Common Era (BCE). It follows the Last Glacial Period, which concluded with the Holocene glacial retreat. The Holocene and the preceding Pleistocene together form the Quaternary period. The Holocene has been identified with the current warm period, known as MIS 1. It is considered by some to be an interglacial period within the Pleistocene Epoch, called the Flandrian interglacial.

<span class="mw-page-title-main">Pleistocene</span> First epoch of the Quaternary Period

The Pleistocene is the geological epoch that lasted from c. 2.58 million to 11,700 years ago, spanning the Earth's most recent period of repeated glaciations. Before a change was finally confirmed in 2009 by the International Union of Geological Sciences, the cutoff of the Pleistocene and the preceding Pliocene was regarded as being 1.806 million years Before Present (BP). Publications from earlier years may use either definition of the period. The end of the Pleistocene corresponds with the end of the last glacial period and also with the end of the Paleolithic age used in archaeology. The name is a combination of Ancient Greek πλεῖστος (pleîstos), meaning "most", and καινός, meaning "new".

The Younger Dryas, which occurred circa 12,900 to 11,700 years BP, was a return to glacial conditions which temporarily reversed the gradual climatic warming after the Last Glacial Maximum, which lasted from circa 27,000 to 20,000 years BP. The Younger Dryas was the last stage of the Pleistocene epoch that spanned from 2,580,000 to 11,700 years BP and it preceded the current, warmer Holocene epoch. The Younger Dryas was the most severe and longest lasting of several interruptions to the warming of the Earth's climate, and it was preceded by the Late Glacial Interstadial, an interval of relative warmth that lasted from 14,670 to 12,900 BP.

<span class="mw-page-title-main">Last Glacial Period</span> Period of major glaciations of the northern hemisphere (115,000–12,000 years ago)

The Last Glacial Period (LGP), also known colloquially as the Last Ice Age or simply Ice Age, occurred from the end of the Eemian to the end of the Younger Dryas, encompassing the period c. 115,000 – c. 11,700 years ago.

The Allerød oscillation was a warm and moist global interstadial that occurred c.13,900 to 12,900 BP. It was preceded by the Older Dryas and followed by the Younger Dryas cold periods. The Allerød was nearly at the end of the Last Glacial Period. It raised temperatures in the northern Atlantic region to almost present-day levels, before they declined again in the Younger Dryas, which was followed by the present warm Holocene.

The Bølling oscillation, also Bølling interstadial, was a cool temperate climatic interstadial between the glacial Oldest Dryas and Older Dryas stadials, between 14,700 and 14,100 BP, near to the end of the last glacial period. It is named after a peat sequence discovered at Bølling lake in central Jutland, Denmark. It is used to describe a period of time in relation to Pollen zone Ib—in regions where the Older Dryas is not detected in climatological evidence, the Bølling–Allerød is considered a single interstadial period.

<span class="mw-page-title-main">Ahrensburg culture</span> Late Upper Paleolithic nomadic hunter culture

The Ahrensburg culture or Ahrensburgian was a late Upper Paleolithic nomadic hunter culture in north-central Europe during the Younger Dryas, the last spell of cold at the end of the Weichsel glaciation resulting in deforestation and the formation of a tundra with bushy arctic white birch and rowan. The most important prey was the wild reindeer. The earliest definite finds of arrow and bow date to this culture, though these weapons might have been invented earlier. The Ahrensburgian was preceded by the Hamburg and Federmesser cultures and superseded by the Maglemosian and Swiderian cultures. Ahrensburgian finds were made in southern and western Scandinavia, the North German plain and western Poland. The Ahrensburgian area also included vast stretches of land now at the bottom of the North and Baltic Sea, since during the Younger Dryas the coastline took a much more northern course than today.

<span class="mw-page-title-main">Interglacial</span> Geological interval of warmer temperature that separates glacial periods within an ice age

An interglacial period is a geological interval of warmer global average temperature lasting thousands of years that separates consecutive glacial periods within an ice age. The current Holocene interglacial began at the end of the Pleistocene, about 11,700 years ago.

The Blytt–Sernander classification, or sequence, is a series of North European climatic periods or phases based on the study of Danish peat bogs by Axel Blytt (1876) and Rutger Sernander (1908). The classification was incorporated into a sequence of pollen zones later defined by Lennart von Post, one of the founders of palynology.

The Older Dryas was a stadial (cold) period between the Bølling and Allerød interstadials, about 14,000 years Before Present, towards the end of the Pleistocene. Its date range is not well defined, with estimates varying by 400 years, but its duration is agreed to have been around two centuries.

<span class="mw-page-title-main">Boreal (age)</span> First of Blytt–Sernander sequence of north European climatic phase

In paleoclimatology of the Holocene, the Boreal was the first of the Blytt–Sernander sequence of north European climatic phases that were originally based on the study of Danish peat bogs, named for Axel Blytt and Rutger Sernander, who first established the sequence. In peat bog sediments, the Boreal is also recognized by its characteristic pollen zone. It was preceded by the Younger Dryas, the last cold snap of the Pleistocene, and followed by the Atlantic, a warmer and moister period than our most recent climate. The Boreal, transitional between the two periods, varied a great deal, at times having within it climates like today's.

In the science of tephrochronology, the Saksunarvatn tephra is volcanic ejecta that formed an ash layer that is useful in dating Northern European sediment layers that were laid down during the Boreal period, the warm climate phase that followed the cold snap of the Younger Dryas as the earth made the transition from the last Pleistocene glaciation to the current interglacial, or Holocene. This was a period of rapid climatic transitions around the North Atlantic, some of which took place during a matter of decades. Similar effects are evident in independent palaeoclimatic reconstructions obtained from pollen zones, marine and ice-core records, but these sequences cannot be reliably calibrated with one another. The ash layer from a specific volcanic event, deposited simultaneously over wide areas, provides a common reference point or time marker called a horizon, which establishes simultaneity in the sequences wherever that layer is found: this set of techniques is called tephrochronology.

Yoldia Sea is a name given by geologists to a variable brackish water stage in the Baltic Sea basin that prevailed after the Baltic Ice Lake was drained to sea level during the Weichselian glaciation. Dates for the Yoldia sea are obtained mainly by radiocarbon dating material from ancient sediments and shore lines and from clay-varve chronology. They tend to vary by as much as a thousand years, but a good estimate is 10,300 – 9500 radiocarbon years BC, equivalent to ca 11,700–10,700 calendar years BC. The sea ended gradually when isostatic rise of Scandinavia closed or nearly closed its effluents, altering the balance between saline and fresh water. The Yoldia Sea became Ancylus Lake. The Yoldia Sea stage had three phases of which only the middle phase had brackish water.

<span class="mw-page-title-main">Lennart von Post</span>

Ernst Jakob Lennart von Post was a Swedish naturalist and geologist. He was the first to publish quantitative analysis of pollen and is counted as one of the founders of palynology. He was a professor at Stockholm University 1929–1950.

Johann Heinrich Christfried Dau (1790–1831) was a Holstein-Danish geologist and writer, whose identification of peat layers led eventually to a system of classifying and dating post-glacial northern European paleoclimate periods, the Blytt–Sernander sequences based on peat stratigraphy.

<span class="mw-page-title-main">Subboreal</span> Climatic period of the Holocene

The Subboreal is a climatic period, immediately before the present one, of the Holocene. It lasted from 3710 to 450 BCE.

The Subatlantic is the current climatic age of the Holocene epoch. It started about 2,500 years BP and is still ongoing. Its average temperatures are slightly lower than during the preceding Subboreal and Atlantic. During its course, the temperature underwent several oscillations, which had a strong influence on fauna and flora and thus indirectly on the evolution of human civilizations. With intensifying industrialisation, human society started to stress the natural climatic cycles with increased greenhouse gas emissions.

<span class="mw-page-title-main">Weichselian glaciation</span> Last glacial period and its associated glaciation in northern parts of Europe

The Weichselian glaciation was the last glacial period and its associated glaciation in northern parts of Europe. In the Alpine region it corresponds to the Würm glaciation. It was characterized by a large ice sheet that spread out from the Scandinavian Mountains and extended as far as the east coast of Schleswig-Holstein, northern Poland and Northwest Russia. This glaciation is also known as the Weichselian ice age, Vistulian glaciation, Weichsel or, less commonly, the Weichsel glaciation, Weichselian cold period (Weichsel-Kaltzeit), Weichselian glacial (Weichsel-Glazial), Weichselian Stage or, rarely, the Weichselian complex (Weichsel-Komplex).

<span class="mw-page-title-main">Postglacial vegetation</span>

Postglacial vegetation refers to plants that colonize the newly exposed substrate after a glacial retreat. The term "postglacial" typically refers to processes and events that occur after the departure of glacial ice or glacial climates.

References

  1. West, R. G. (October 1970). "POLLEN ZONES IN THE PLEISTOCENE OF GREAT BRITAIN AND THEIR CORRELATION". New Phytologist. 69 (4): 1179–1183. doi: 10.1111/j.1469-8137.1970.tb02498.x . ISSN   0028-646X.