Polydymite

Last updated
Polydymite
Polydymite-614287.jpg
General
Category Sulfide mineral
Thiospinel group
Spinel structural group
Formula
(repeating unit)
Ni3S4
IMA symbol Pld [1]
Strunz classification 2.DA.05
Crystal system Cubic
Crystal class Hexoctahedral (m3m)
H-M symbol: (4/m 3 2/m)
Space group Fd3m
Unit cell a = 9.48 Å; Z = 8
Identification
ColorPale to steel-gray
Crystal habit As octahedral crystals, massive, granular to compact
Twinning Twinning on {111}
Cleavage Indistinct on {001}
Fracture Conchoidal to uneven
Mohs scale hardness4.5 – 5.5
Luster Metallic
Streak Black gray
Diaphaneity Opaque
Specific gravity 4.5 – 4.8
Alters toTarnishes to copper-red
References [2] [3] [4] [5]

Polydymite, Ni2+Ni23+S4, is a supergene thiospinel sulfide mineral associated with the weathering of primary pentlandite nickel sulfide.

Contents

Polydymite crystallises in the isometric system, with a hardness of 4.5 to 5.5 and a specific gravity of about 4, is dark violet gray to copper-red, often with verdigris and patina from associated copper and arsenic sulfides, and is typically in amorphous to massive infill of lower saprolite ultramafic lithologies.

Polydymite is the nickel equivalent of violarite and in many cases these two minerals are formed together, potentially in solid solution.

Common contaminants of polydymite are cobalt and iron. Polydymite forms a series with linnaeite, Co+2Co+32S4. [6]

Paragenesis

Polydymite is formed by oxidisation of primary sulfide assemblages in nickel sulfide mineralisation. The process of formation involves oxidation of Ni2+ and Fe2+ which is contained within the primary pentlandite-pyrrhotite-pyrite assemblage.

Continued oxidation of polydymite leads to replacement by goethite and formation of a gossaniferous boxwork, with nickel tending to remain as impurities within the goethite or hematite, or rarely as carbonate minerals.

Occurrence

Polydymite is reported widely from the oxidised regolith above primary nickel sulfide ore systems worldwide. It is less common than related violarite, due to the high iron content of most primary sulfides.

Economic importance

Polydymite is an important transitional ore in many nickel sulfide mines, as it has increased nickel tenor (Ni% as a total of sulfide) and occupies a position within the mineralised profile where it must be extracted to pay for development down to the more valuable primary (hypogene) mineralisation.

Related Research Articles

<span class="mw-page-title-main">Pentlandite</span> Iron–nickel sulfide

Pentlandite is an iron–nickel sulfide with the chemical formula (Fe,Ni)9S8. Pentlandite has a narrow variation range in nickel to iron ratios (Ni:Fe), but it is usually described as 1:1. In some cases, this ratio is skewed by the presence of pyrrhotite inclusions. It also contains minor cobalt, usually at low levels as a fraction of weight.

<span class="mw-page-title-main">Nickeline</span> Nickel arsenide mineral

Nickeline or niccolite is the mineral form of nickel arsenide. The naturally-occurring mineral contains roughly 43.9% nickel and 56.1% arsenic by mass, but composition of the mineral may vary slightly.

<span class="mw-page-title-main">Pyrrhotite</span> Magnetic iron sulfide mineral

Pyrrhotite is an iron sulfide mineral with the formula Fe(1-x)S. It is a nonstoichiometric variant of FeS, the mineral known as troilite. Pyrrhotite is also called magnetic pyrite, because the color is similar to pyrite and it is weakly magnetic. The magnetism decreases as the iron content increases, and troilite is non-magnetic. Pyrrhotite is generally tabular and brassy/bronze in color with a metallic luster. The mineral occurs with mafic igneous rocks like norites, and may form from pyrite during metamorphic processes. Pyrrhotite is associated and mined with other sulfide minerals like pentlandite, pyrite, chalcopyrite, and magnetite, and has been found globally.

<span class="mw-page-title-main">Ore genesis</span> How the various types of mineral deposits form within the Earths crust

Various theories of ore genesis explain how the various types of mineral deposits form within Earth's crust. Ore-genesis theories vary depending on the mineral or commodity examined.

<span class="mw-page-title-main">Cumulate rock</span> Igneous rocks formed by the accumulation of crystals from a magma either by settling or floating.

Cumulate rocks are igneous rocks formed by the accumulation of crystals from a magma either by settling or floating. Cumulate rocks are named according to their texture; cumulate texture is diagnostic of the conditions of formation of this group of igneous rocks. Cumulates can be deposited on top of other older cumulates of different composition and colour, typically giving the cumulate rock a layered or banded appearance.

Kambalda type komatiitic nickel ore deposits are a class of magmatic iron-nickel-copper-platinum-group element ore deposit in which the physical processes of komatiite volcanology serve to deposit, concentrate and enrich a Fe-Ni-Cu-(PGE) sulfide melt within the lava flow environment of an erupting komatiite volcano.

In ore deposit geology, supergene processes or enrichment are those that occur relatively near the surface as opposed to deep hypogene processes. Supergene processes include the predominance of meteoric water circulation (i.e. water derived from precipitation) with concomitant oxidation and chemical weathering. The descending meteoric waters oxidize the primary (hypogene) sulfide ore minerals and redistribute the metallic ore elements. Supergene enrichment occurs at the base of the oxidized portion of an ore deposit. Metals that have been leached from the oxidized ore are carried downward by percolating groundwater, and react with hypogene sulfides at the supergene-hypogene boundary. The reaction produces secondary sulfides with metal contents higher than those of the primary ore. This is particularly noted in copper ore deposits where the copper sulfide minerals chalcocite (Cu2S), covellite (CuS), digenite (Cu18S10), and djurleite (Cu31S16) are deposited by the descending surface waters.

<span class="mw-page-title-main">Gaspéite</span> Nickel carbonate mineral

Gaspéite, a very rare nickel carbonate mineral, with the formula (Ni,Fe,Mg)CO3, is named for the place it was first described, in the Gaspé Peninsula, Québec, Canada.

<span class="mw-page-title-main">Kambaldaite</span> Carbonate mineral

Kambaldaite, NaNi4(CO3)3(OH)3·3H2O, is an extremely rare hydrated sodium nickel carbonate mineral described from gossaniferous material associated with Kambalda type komatiitic nickel ore deposits at Kambalda, Western Australia, and Widgie Townsite nickel gossan, Widgiemooltha, Western Australia.

Violarite (Fe2+Ni23+S4) is a supergene sulfide mineral associated with the weathering and oxidation of primary pentlandite nickel sulfide ore minerals.

The Widgiemooltha Komatiite is a formation of komatiite in the Yilgarn Craton of Western Australia.

<span class="mw-page-title-main">Carrollite</span> Mineral

Carrollite, CuCo2S4, is a sulfide of copper and cobalt, often with substantial substitution of nickel for the metal ions, and a member of the linnaeite group. It is named after the type locality in Carroll County, Maryland, US, at the Patapsco mine, Sykesville.

<span class="mw-page-title-main">Linnaeite</span> Cobalt sulfide mineral

Linnaeite is a cobalt sulfide mineral with the composition Co+2Co+32S4. It was discovered in 1845 in Västmanland, Sweden, and was named to honor Carl Linnaeus (1707–1778).

<span class="mw-page-title-main">Cattierite</span> Cobalt sulfide mineral

Cattierite (CoS2) is a cobalt sulfide mineral found in the Democratic Republic of Congo. It was discovered together with the nickel sulfide vaesite by Johannes F. Vaes, a Belgian mineralogist and named after Felicien Cattier, who was chairman of the board of the Union Minière du Haut-Katanga.

<span class="mw-page-title-main">Cubanite</span> Copper iron sulfide mineral

Cubanite is a copper iron sulfide mineral that commonly occurs as a minor alteration mineral in magmatic sulfide deposits. It has the chemical formula CuFe2S3 and when found, it has a bronze to brass-yellow appearance. On the Mohs hardness scale, cubanite falls between 3.5 and 4 and has a orthorhombic crystal system. Cubanite is chemically similar to chalcopyrite; however, it is the less common copper iron sulfide mineral due to crystallization requirements.

Iron oxide copper gold ore deposits (IOCG) are important and highly valuable concentrations of copper, gold and uranium ores hosted within iron oxide dominant gangue assemblages which share a common genetic origin.

The thiospinel group is a group of sulfide minerals with a general formula AB2X4 where A is nominally a +2 metal, B is a +3 metal and X is -2 sulfide or similar anion. Thio refers to sulfur and spinel indicates their isometric spinel-like structure.

<span class="mw-page-title-main">Nickel sulfide</span> Chemical compound

Nickel sulfide is any inorganic compound with the formula NixSy. These compounds range in color from bronze (Ni3S2) to black (NiS2). The nickel sulfide with simplest stoichiometry is NiS, also known as the mineral millerite. From the economic perspective, Ni9S8, the mineral pentlandite, is the chief source of mined nickel. Other minerals include heazlewoodite (Ni3S2) and polydymite (Ni3S4), and the mineral Vaesite (NiS2). Some nickel sulfides are used commercially as catalysts.

<span class="mw-page-title-main">Millerite</span> Nickel sulfide mineral

Millerite or nickel blende is a nickel sulfide mineral, NiS. It is brassy in colour and has an acicular habit, often forming radiating masses and furry aggregates. It can be distinguished from pentlandite by crystal habit, its duller colour, and general lack of association with pyrite or pyrrhotite.

<span class="mw-page-title-main">Heterogenite</span> Heterogenite is an important cobalt mineral in the world, mostly found in DR Congo

Heterogenite is a natural tri-valent cobalt oxyhydroxide mineral. It is the most abundant oxidised cobalt mineral in the Katanga Copperbelt, a region in the Democratic Republic of the Congo. About 70% of known heterogenite is located in the DRC.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi:10.1180/mgm.2021.43.
  2. Mineralienatlas
  3. Polydymite on Mindat.org
  4. Polydymite in the Handbook of Mineralogy
  5. Polydymite data on Webmineral
  6. Linnaeite-Polydymite Series