A porism is a mathematical proposition or corollary. It has been used to refer to a direct consequence of a proof, analogous to how a corollary refers to a direct consequence of a theorem. In modern usage, it is a relationship that holds for an infinite range of values but only if a certain condition is assumed, such as Steiner's porism. [1] The term originates from three books of Euclid that have been lost. A proposition may not have been proven, so a porism may not be a theorem or true.
The book that talks about porisms first is Euclid's Porisms. What is known of it is in Pappus of Alexandria's Collection, who mentions it along with other geometrical treatises, and gives several lemmas necessary for understanding it. [2] Pappus states:
Pappus said that the last definition was changed by certain later geometers, who defined a porism as an accidental characteristic as τὸ λεῖπον ὑποθέσει τοπικοῦ θεωρήματος (to leîpon hypothései topikoû theōrḗmatos), that which falls short of a locus-theorem by a (or in its) hypothesis. Proclus pointed out that the word porism was used in two senses: one sense is that of "corollary", as a result unsought but seen to follow from a theorem. In the other sense, he added nothing to the definition of "the older geometers", except to say that the finding of the center of a circle and the finding of the greatest common measure are porisms. [3] [2]
Pappus rejected Euclid's definition of porism. A porism, expressed in modern language, asserts that given four straight lines, of which three turn about the points in which they meet the fourth if two of the points of intersection of these lines lie each on a fixed straight line, the remaining point of intersection will also lie on another straight line. The general definition applies to any number, n, of straight lines, of which n can turn about as many points fixed on the (n + 1)th. These n straight lines cut two and two into 1⁄2n(n − 1) points, 1⁄2n(n − 1) being a triangular number whose side is n − 1. If they are made to turn about the n fixed points so that any n − 1 of their 1⁄2n(n − 1) points of intersection, chosen subject to a certain limitation, lie on n − 1 given fixed straight lines, then each of the remaining points of intersection, 1⁄2n(n − 1)(n − 2) in number, describes a straight line. [2]
The above can be expressed as: If about two fixed points, P and Q, one makes the turn two straight lines meeting on a given straight line, L, and if one of them cuts off a segment, AM, from a fixed straight line, AX, given in position, another fixed straight line BY, and a point B fixed on it can be determined, such that the segment BM' made by the second moving line on this second fixed-line measured from B has a given ratio X to AM. The lemmas which Pappus gives in connection with the porisms are:
Robert Simson explained the only three propositions which Pappus indicates with any completeness, which was published in the Philosophical Transactions in 1723. Later he investigated the subject of porisms generally in a work entitled De porismatibus traclatus; quo doctrinam porisrnatum satis explicatam, et in posterum ab oblivion tutam fore sperat auctor, and published after his death in a volume, Roberti Simson opera quaedam reliqua (Glasgow, 1776). [4]
Simson's treatise, De porismatibus, begins with the definitions for theorem, problem, datum, porism, and locus. Simon wrote that Pappus's definition is too general, and that he substituted it as:
Porisma est propositio in qua proponitur demonstrare rem aliquam, vel plures datas esse, cui, vel quibus, ut et cuilibet ex rebus innumeris, non quidem datis, sed quae ad ea quae data sunt eandem habent rationem, convenire ostendendum est affectionem quandam communem in propositione descriptam. Porisma etiam in forma problematis enuntiari potest, si nimirum ex quibus data demonstranda sunt, invenienda proponantur.[ clarification needed ]
Simson said that a locus is a species of porism. Then follows a Latin translation of Pappus's note on the porisms, and the propositions which form the bulk of the treatise. [4]
John Playfair's memoir (Trans. Roy. Soc. Edin., 1794, vol. iii.), a sort of sequel to Simson's treatise, explored the probable origin of porisms, or the steps that led ancient geometers to discover them. Playfair remarked that the careful investigation of all possible particular cases of a proposition would show that
These cases could be defined separately, were in a manner intermediate between theorems and problems, and were called "porisms." Playfair defined a porism as "[a] proposition affirming the possibility of finding such conditions as will render a certain problem indeterminate or capable of innumerable solutions." [4]
Although Playfair's definition of a porism appears to be most favoured in England, Simson's view has been most generally accepted abroad, and had the support of Michel Chasles. However, in Liouville's Journal de mathematiques pures et appliquées (vol. xx., July, 1855), P. Breton published Recherches nouvelles sur les porismes d'Euclide, in which he gave a new translation of the text of Pappus, and sought to base a view of the nature of a porism that conforms more closely to Pappus's definition. This was followed in the same journal and in La Science by a controversy between Breton and A. J. H. Vincent, who disputed the interpretation given by the former of Pappus's text, and declared himself in favour of Frans van Schooten's idea, put forward in his Mathematicae exercitationes (1657). According to Schooten, if the various relations between straight lines in a figure are written down in the form of equations or proportions, then the combination of these equations in all possible ways, and of new equations thus derived from them leads to the discovery of innumerable new properties of the figure. [4]
The discussions between Breton and Vincent, which C. Housel joined, did not carry forward the work of restoring Euclid's Porisms, which was left for Chasles. His work (Les Trois livres de porismes d'Euclide, Paris, 1860) makes full use of all the material found in Pappus. [4]
An interesting hypothesis about porisms was put forward by H. G. Zeuthen (Die Lehre von den Kegelschnitten im Altertum, 1886, ch. viii.). Zeuthen observed, for example the intercept-porism is still true if the two fixed points are points on a conic, and the straight lines drawn through them intersect on the conic instead of on a fixed straight line. He conjectured that the porisms were a by-product of a fully developed projective geometry of conics. [4]
Euclid was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the Elements treatise, which established the foundations of geometry that largely dominated the field until the early 19th century. His system, now referred to as Euclidean geometry, involved new innovations in combination with a synthesis of theories from earlier Greek mathematicians, including Eudoxus of Cnidus, Hippocrates of Chios, and Theaetetus. With Archimedes and Apollonius of Perga, Euclid is generally considered among the greatest mathematicians of antiquity, and one of the most influential in the history of mathematics.
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated earlier, Euclid was the first to organize these propositions into a logical system in which each result is proved from axioms and previously proved theorems.
In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises by either replacing the parallel postulate with an alternative, or relaxing the metric requirement. In the former case, one obtains hyperbolic geometry and elliptic geometry, the traditional non-Euclidean geometries. When the metric requirement is relaxed, then there are affine planes associated with the planar algebras, which give rise to kinematic geometries that have also been called non-Euclidean geometry.
Robert Simson was a Scottish mathematician and professor of mathematics at the University of Glasgow. The Simson line is named after him.
La Géométrie was published in 1637 as an appendix to Discours de la méthode, written by René Descartes. In the Discourse, Descartes presents his method for obtaining clarity on any subject. La Géométrie and two other appendices, also by Descartes, La Dioptrique (Optics) and Les Météores (Meteorology), were published with the Discourse to give examples of the kinds of successes he had achieved following his method.
In geometry, a secant is a line that intersects a curve at a minimum of two distinct points. The word secant comes from the Latin word secare, meaning to cut. In the case of a circle, a secant intersects the circle at exactly two points. A chord is the line segment determined by the two points, that is, the interval on the secant whose ends are the two points.
In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, projective space, and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than Euclidean space, for a given dimension, and that geometric transformations are permitted that transform the extra points to Euclidean points, and vice-versa.
Apollonius of Perga was an ancient Greek geometer and astronomer known for his work on conic sections. Beginning from the earlier contributions of Euclid and Archimedes on the topic, he brought them to the state prior to the invention of analytic geometry. His definitions of the terms ellipse, parabola, and hyperbola are the ones in use today. With his predecessors Euclid and Archimedes, Apollonius is generally considered among the greatest mathematicians of antiquity.
In geometry, the cross-ratio, also called the double ratio and anharmonic ratio, is a number associated with a list of four collinear points, particularly points on a projective line. Given four points A, B, C, D on a line, their cross ratio is defined as
Pappus of Alexandria was one of the last great Greek mathematicians of antiquity; he is known for his Synagoge (Συναγωγή) or Collection, and for Pappus's hexagon theorem in projective geometry. Nothing is known of his life, other than what can be found in his own writings: that he had a son named Hermodorus, and was a teacher in Alexandria.
In geometry, the Dandelin spheres are one or two spheres that are tangent both to a plane and to a cone that intersects the plane. The intersection of the cone and the plane is a conic section, and the point at which either sphere touches the plane is a focus of the conic section, so the Dandelin spheres are also sometimes called focal spheres.
In mathematics, Pappus's hexagon theorem states that
Michel Floréal Chasles was a French mathematician.
In Euclidean plane geometry, Apollonius's problem is to construct circles that are tangent to three given circles in a plane (Figure 1). Apollonius of Perga posed and solved this famous problem in his work Ἐπαφαί ; this work has been lost, but a 4th-century AD report of his results by Pappus of Alexandria has survived. Three given circles generically have eight different circles that are tangent to them (Figure 2), a pair of solutions for each way to divide the three given circles in two subsets.
In mathematics, the Cayley–Bacharach theorem is a statement about cubic curves in the projective plane P2. The original form states:
In mathematics, enumerative geometry is the branch of algebraic geometry concerned with counting numbers of solutions to geometric questions, mainly by means of intersection theory.
In geometry, given a triangle ABC and a point P on its circumcircle, the three closest points to P on lines AB, AC, and BC are collinear. The line through these points is the Simson line of P, named for Robert Simson. The concept was first published, however, by William Wallace in 1799, and is sometimes called the Wallace line.
Foundations of geometry is the study of geometries as axiomatic systems. There are several sets of axioms which give rise to Euclidean geometry or to non-Euclidean geometries. These are fundamental to the study and of historical importance, but there are a great many modern geometries that are not Euclidean which can be studied from this viewpoint. The term axiomatic geometry can be applied to any geometry that is developed from an axiom system, but is often used to mean Euclidean geometry studied from this point of view. The completeness and independence of general axiomatic systems are important mathematical considerations, but there are also issues to do with the teaching of geometry which come into play.
In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's Elements, is a distinctive axiom in Euclidean geometry. It states that, in two-dimensional geometry:
If a line segment intersects two straight lines forming two interior angles on the same side that are less than two right angles, then the two lines, if extended indefinitely, meet on that side on which the angles sum to less than two right angles.
In geometry, Playfair's axiom is an axiom that can be used instead of the fifth postulate of Euclid :
In a plane, given a line and a point not on it, at most one line parallel to the given line can be drawn through the point.
Attribution: