Porphyridium cruentum

Last updated

Porphyridium cruentum
Scientific classification
Domain:
(unranked):
Division:
Class:
Order:
Family:
Genus:
Species:
P. cruentum
Binomial name
Porphyridium cruentum
(S.F.Gray) Nägeli
Synonyms

Olivia cruenta S. F. Gray

Porphyridium cruentum is a species of red algae in the family Porphyridiophyceae.

The microalga Porphyridium sp. is a potential source for several products like fatty acids, lipids, cell-wall polysaccharides and pigments . The polysaccharides of this species are sulphated and their structure gives rise to some unique properties that could lead to a broad range of industrial and pharmaceutical applications. Additionally, P. cruentum biomass contains carbohydrates of up to 57% have been reported. Thus, the combined amount of carbohydrates in biomass and exopolysaccharides of this microalga could potentially provide the source for bio-fuel and pharmaceutical. [1] [2] This algae contains phycoerythrin that can be extracted by lyse and chromatography. [3]

The genus Porphyridium has been classified among blue-green, red, and green algae. [4]

Related Research Articles

<span class="mw-page-title-main">Polysaccharide</span> Long carbohydrate polymers comprising starch, glycogen, cellulose, and chitin

Polysaccharides, or polycarbohydrates, are the most abundant carbohydrates found in food. They are long-chain polymeric carbohydrates composed of monosaccharide units bound together by glycosidic linkages. This carbohydrate can react with water (hydrolysis) using amylase enzymes as catalyst, which produces constituent sugars. They range in structure from linear to highly branched. Examples include storage polysaccharides such as starch, glycogen and galactogen and structural polysaccharides such as cellulose and chitin.

Phycoerythrin (PE) is a red protein-pigment complex from the light-harvesting phycobiliprotein family, present in cyanobacteria, red algae and cryptophytes, accessory to the main chlorophyll pigments responsible for photosynthesis.The red pigment is due to the prosthetic group, phycoerythrobilin, which gives phycoerythrin its red color.

<span class="mw-page-title-main">Microalgae</span> Microscopic algae

Microalgae or microphytes are microscopic algae invisible to the naked eye. They are phytoplankton typically found in freshwater and marine systems, living in both the water column and sediment. They are unicellular species which exist individually, or in chains or groups. Depending on the species, their sizes can range from a few micrometers (μm) to a few hundred micrometers. Unlike higher plants, microalgae do not have roots, stems, or leaves. They are specially adapted to an environment dominated by viscous forces.

<i>Anabaena</i> Genus of bacteria

Anabaena is a genus of filamentous cyanobacteria that exist as plankton. They are known for nitrogen-fixing abilities, and they form symbiotic relationships with certain plants, such as the mosquito fern. They are one of four genera of cyanobacteria that produce neurotoxins, which are harmful to local wildlife, as well as farm animals and pets. Production of these neurotoxins is assumed to be an input into its symbiotic relationships, protecting the plant from grazing pressure.

<span class="mw-page-title-main">Algaculture</span> Aquaculture involving the farming of algae

Algaculture is a form of aquaculture involving the farming of species of algae.

Fucoidan is a long chain sulfated polysaccharide found in various species of brown algae. Commercially available fucoidan is commonly extracted from the seaweed species Fucus vesiculosus, Cladosiphon okamuranus, Laminaria japonica and Undaria pinnatifida. Variant forms of fucoidan have also been found in animal species, including the sea cucumber.

<i>Mastocarpus stellatus</i> Species of alga

Mastocarpus stellatus, commonly known as carrageenan moss or false Irish moss, is a species in the Rhodophyceae division, a red algae seaweed division, and the Phyllophoracea family. M. stellatus is closely related to Irish Moss. It grows in the intertidal zone. It is most collected in North Atlantic regions such as Ireland and Scotland, together with Irish moss, dried, and sold for cooking and as the basis for a drink reputed to ward off colds and flu. Marine biologists have completed studies on the medicinal reputation of M. stellatus to discover the full potential of its pharmaceutical benefits. Additionally, marine biologists have conducted research on its potential to serve as an alternative to plastic. The application of M. stellatus in these different industries is correlated with the seaweed's adaptations which developed in response to the environmental stressors present around its location on the rocky intertidal.

<i>Scenedesmus</i> Genus of green algae

Scenedesmus is a genus of green algae, in the class Chlorophyceae. They are colonial and non-motile. They are one of the most common components of phytoplankton in freshwater habitats worldwide.

<span class="mw-page-title-main">Algae fuel</span> Use of algae as a source of energy-rich oils

Algae fuel, algal biofuel, or algal oil is an alternative to liquid fossil fuels that uses algae as its source of energy-rich oils. Also, algae fuels are an alternative to commonly known biofuel sources, such as corn and sugarcane. When made from seaweed (macroalgae) it can be known as seaweed fuel or seaweed oil.

<span class="mw-page-title-main">Trophic state index</span> Measure of the ability of water to sustain biological productivity

The Trophic State Index (TSI) is a classification system designed to rate water bodies based on the amount of biological productivity they sustain. Although the term "trophic index" is commonly applied to lakes, any surface water body may be indexed.

<span class="mw-page-title-main">Red algae</span> Division of plant life

Red algae, or Rhodophyta, are one of the oldest groups of eukaryotic algae. The Rhodophyta comprises one of the largest phyla of algae, containing over 7,000 currently recognized species with taxonomic revisions ongoing. The majority of species (6,793) are found in the Florideophyceae (class), and mostly consist of multicellular, marine algae, including many notable seaweeds. Red algae are abundant in marine habitats but relatively rare in freshwaters. Approximately 5% of red algae species occur in freshwater environments, with greater concentrations found in warmer areas. Except for two coastal cave dwelling species in the asexual class Cyanidiophyceae, there are no terrestrial species, which may be due to an evolutionary bottleneck in which the last common ancestor lost about 25% of its core genes and much of its evolutionary plasticity.

<i>Nannochloropsis</i> Genus of algae

Nannochloropsis is a genus of algae comprising six known species. The genus in the current taxonomic classification was first termed by Hibberd (1981). The species have mostly been known from the marine environment but also occur in fresh and brackish water. All of the species are small, nonmotile spheres which do not express any distinct morphological features that can be distinguished by either light or electron microscopy. The characterisation is mostly done by rbcL gene and 18S rRNA sequence analysis.

<span class="mw-page-title-main">Algae bioreactor</span> Device used for cultivating micro or macro algae

An algae bioreactor is used for cultivating micro or macroalgae. Algae may be cultivated for the purposes of biomass production (as in a seaweed cultivator), wastewater treatment, CO2 fixation, or aquarium/pond filtration in the form of an algae scrubber. Algae bioreactors vary widely in design, falling broadly into two categories: open reactors and enclosed reactors. Open reactors are exposed to the atmosphere while enclosed reactors, also commonly called photobioreactors, are isolated to varying extents from the atmosphere. Specifically, algae bioreactors can be used to produce fuels such as biodiesel and bioethanol, to generate animal feed, or to reduce pollutants such as NOx and CO2 in flue gases of power plants. Fundamentally, this kind of bioreactor is based on the photosynthetic reaction, which is performed by the chlorophyll-containing algae itself using dissolved carbon dioxide and sunlight. The carbon dioxide is dispersed into the reactor fluid to make it accessible to the algae. The bioreactor has to be made out of transparent material.

<span class="mw-page-title-main">Culture of microalgae in hatcheries</span>

Microalgae or microscopic algae grow in either marine or freshwater systems. They are primary producers in the oceans that convert water and carbon dioxide to biomass and oxygen in the presence of sunlight.

Crypthecodinium cohnii is a species of dinoflagellate microalgae. It is used industrially in the production of docosahexaenoic acid. Crypthecodinium cohnii is a heterotrophic non-photosynthetic Microalgae. C. cohnii can acclimate a higher docosahexaenoic acid to polyunsaturated fatty acids ratio, however current studies are trying to increase the volume of DHA production by creating mutant strains. Studies have shown that an increase in the supply of Dissolved Oxygen results in an increased production of DHA. In addition to oxygen concentration, C. cohnii is known to react to a change in salinity by changing their growth rate. C. cohnii's growth is highly dependent on their microbiome or environment. Most of the DHA in the Microalgae is found in the phospholipid, phosphatidylcholine. C. cohnii cultures require an organic carbon source to allow for accumulation of DHA. C. cohnii has been shown to accumulate other fatty acids and starch, especially due to nutrient limitation. C. cohnii showed the greatest accumulation of lipids when grown in a pH auxostat culture.

<i>Furcellaria</i> Genus of seaweeds

Furcellaria is a genus of red algae. It is a monotypic genus, the only species being Furcellaria lumbricalis, which has commercial importance as a raw material for carrageenan production. It is mainly harvested from the waters of Denmark and Canada.

<i>Cyanothece</i> Genus of bacteria

Cyanothece is a genus of unicellular, diazotrophic, oxygenic photosynthesizing cyanobacteria.

<i>Chlorella vulgaris</i> Species of green alga

Chlorella vulgaris is a species of green microalga in the division Chlorophyta. It is mainly used as a dietary supplement or protein-rich food additive in Japan.

Aureoumbra lagunensis is a unicellular planktonic marine microalga that belongs in the genus Aureoumbra under the class Pelagophyceae. It is similar in morphology and pigments to Aureococcus anophagefferens and Pelagococcus subviridis. The cell shape is spherical to subspherical and is 2.5 to 5.0 μm in diameter. It is golden-coloured and is encapsulated with extracellular polysaccharide layers and has a single chloroplast structure with pigments.

References

  1. Razaghi, Ali; Godhe, Anna; Albers, Eva (2014). "Effects of nitrogen on growth and carbohydrate formation in Porphyridium cruentum". Open Life Sciences. 9 (2): 156–162. doi: 10.2478/s11535-013-0248-z . S2CID   10358541.
  2. Razaghi, Ali; Godhe, Anna; Albers, Eva (2014). "Effects of nitrogen on growth and carbohydrate formation in Porphyridium cruentum" (PDF). Open Life Sciences. 9 (2): 156–162. doi: 10.2478/s11535-013-0248-z .
  3. Tang, Zhihong; Jilu zhao; Ju, Bao; Li, Wenjun; Wen, Shaohong; Pu, Yang; Qin, Song (2016-07-01). "One-step chromatographic procedure for purification of B-phycoerythrin from Porphyridium cruentum". Protein Expression and Purification. 123: 70–74. doi:10.1016/j.pep.2016.01.018. ISSN   1046-5928. PMID   26851659.
  4. Copeland, H. F. (1956). The Classification of Lower Organisms. Palo Alto: Pacific Books, p. 41, .