Portal frame

Last updated
A portal frame steel building under construction Pre engineered steel buildings PEB Steel Buildings Co., Ltdb2.. 131.JPG
A portal frame steel building under construction

Portal frame is a construction technique where vertical supports are connected to horizontal beams or trusses via fixed joints with designed-in moment-resisting capacity. [1] The result is wide spans and open floors.

Portal frame structures can be constructed using a variety of materials and methods. These include steel, reinforced concrete and laminated timber such as glulam. First developed in the 1960s, they have become the most common form of enclosure for spans of 20 to 60 meters. [2]

Because of these very strong and rigid joints, some of the bending moment in the rafters is transferred to the columns. This means that the size of the rafters can be reduced or the span can be increased for the same size rafters. This makes portal frames a very efficient construction technique to use for wide span buildings.

Portal frame construction is therefore typically seen in warehouses, barns and other places where large, open spaces are required at low cost and a pitched roof is acceptable.

Generally portal frames are used for single-story buildings but they can be used for low-rise buildings with several floors where they can be economic if the floors do not span right across the building (in these circumstances a skeleton frame, with internal columns, would be a more economic choice). A typical configuration might be where there is office space built against one wall of a warehouse.

Portal frames can be clad with various materials. For reasons of economy and speed, the most popular solution is some form of lightweight insulated metal cladding with cavity masonry work to the bottom 2 m of the wall to provide security and impact resistance. The lightweight cladding would be carried on sheeting rails spanning between the columns of the portal frames.

Portal frames can be defined as two-dimensional rigid frames that have the basic characteristics of a rigid joint between column and beam.

The main objective of this form of design is to reduce bending moment in the beam, which allows the frame to act as one structural unit.

The transfer of stresses from the beam to the column results in rotational movement at the foundation, which can be overcome by the introduction of a pin/hinge joint.

For warehouses and industrial buildings, sloping roof made of purlins and ac sheet roofing between portals is provided. For assembly halls, portals with R.C slab roof cast monolithically is used.

Portal frames are designed for the following loads:

Previously, it has been shown that the limit state design/load and resistance factor design (LRFD) and permissible stress design/allowable strength design (ASD) can produce significantly different designs of steel gable frames. [3]

There are few situations where ASD produces significantly lighter weight steel gable frame designs. Additionally, it has been shown that in high snow regions, the difference between the methods is more dramatic. [4]

While designing, care should be taken for proper

If the joints are not rigid, they will "open up" and the frame will be unstable when subjected to loads. This is the pack of cards effect.

  1. Vertical loading results in the walls being pushed outwards. If the foundation cannot resist horizontal push, outward movement will occur and the frame will lose strength.
  2. Wind subjects the frame to uplift forces. Overturning forces on the sides and ends of the building. Drag forces on the roof and sides.
  3. These destabilizing forces are resisted essentially by the weight of the building and in this regard, the foundations contribute significantly to this weight. The foundations are regarded as the building's anchors.

Related Research Articles

Limit State Design (LSD), also known as Load And Resistance Factor Design (LRFD), refers to a design method used in structural engineering. A limit state is a condition of a structure beyond which it no longer fulfills the relevant design criteria. The condition may refer to a degree of loading or other actions on the structure, while the criteria refer to structural integrity, fitness for use, durability or other design requirements. A structure designed by LSD is proportioned to sustain all actions likely to occur during its design life, and to remain fit for use, with an appropriate level of reliability for each limit state. Building codes based on LSD implicitly define the appropriate levels of reliability by their prescriptions.

<span class="mw-page-title-main">Truss</span> Rigid structure that consists of two-force members only

A truss is an assembly of members such as beams, connected by nodes, that creates a rigid structure.

<span class="mw-page-title-main">Space frame</span> Rigid three dimensional load bearing truss structure

In architecture and structural engineering, a space frame or space structure is a rigid, lightweight, truss-like structure constructed from interlocking struts in a geometric pattern. Space frames can be used to span large areas with few interior supports. Like the truss, a space frame is strong because of the inherent rigidity of the triangle; flexing loads are transmitted as tension and compression loads along the length of each strut.

<span class="mw-page-title-main">Beam (structure)</span> Structural element capable of withstanding loads by resisting bending

A beam is a structural element that primarily resists loads applied laterally across the beam's axis. Its mode of deflection is primarily by bending, as loads produce reaction forces at the beam's support points and internal bending moments, shear, stresses, strains, and deflections. Beams are characterized by their manner of support, profile, equilibrium conditions, length, and material.

<span class="mw-page-title-main">Seismic retrofit</span> Modification of existing structures to make them more resistant to seismic activity

Seismic retrofitting is the modification of existing structures to make them more resistant to seismic activity, ground motion, or soil failure due to earthquakes. With better understanding of seismic demand on structures and with recent experiences with large earthquakes near urban centers, the need of seismic retrofitting is well acknowledged. Prior to the introduction of modern seismic codes in the late 1960s for developed countries and late 1970s for many other parts of the world, many structures were designed without adequate detailing and reinforcement for seismic protection. In view of the imminent problem, various research work has been carried out. State-of-the-art technical guidelines for seismic assessment, retrofit and rehabilitation have been published around the world – such as the ASCE-SEI 41 and the New Zealand Society for Earthquake Engineering (NZSEE)'s guidelines. These codes must be regularly updated; the 1994 Northridge earthquake brought to light the brittleness of welded steel frames, for example.

<span class="mw-page-title-main">Rafter</span> Supporting structural member in roof construction

A rafter is one of a series of sloped structural members such as steel beams that extend from the ridge or hip to the wall plate, downslope perimeter or eave, and that are designed to support the roof shingles, roof deck, roof covering and its associated loads. A pair of rafters is called a couple. In home construction, rafters are normally made of wood. Exposed rafters are a feature of some traditional roof styles.

<span class="mw-page-title-main">Framing (construction)</span> Construction technique

Framing, in construction, is the fitting together of pieces to give a structure, particularly a building, support and shape. Framing materials are usually wood, engineered wood, or structural steel. The alternative to framed construction is generally called mass wall construction, where horizontal layers of stacked materials such as log building, masonry, rammed earth, adobe, etc. are used without framing.

A tie, strap, tie rod, eyebar, guy-wire, suspension cables, or wire ropes, are examples of linear structural components designed to resist tension. It is the opposite of a strut or column, which is designed to resist compression. Ties may be made of any tension resisting material.

<span class="mw-page-title-main">Steel frame</span> Building technique using skeleton frames of vertical steel columns

Steel frame is a building technique with a "skeleton frame" of vertical steel columns and horizontal I-beams, constructed in a rectangular grid to support the floors, roof and walls of a building which are all attached to the frame. The development of this technique made the construction of the skyscraper possible. Steel frame has displaced its predecessor, the iron frame, in the early 20th century.

In structural engineering, a rigid frame is the load-resisting skeleton constructed with straight or curved members interconnected by predominantly rigid connections, which resist movements induced at the joints of members. Its members can resist bending moment, shear, and axial loads.

<span class="mw-page-title-main">Steel building</span>

A steel building is a metal structure fabricated with steel for the internal support and for exterior cladding, as opposed to steel framed buildings which generally use other materials for floors, walls, and external envelope. Steel buildings are used for a variety of purposes including storage, work spaces and living accommodation. They are classified into specific types depending on how they are used.

Steel Design, or more specifically, Structural Steel Design, is an area of structural engineering used to design steel structures. These structures include schools, houses, bridges, commercial centers, tall buildings, warehouses, aircraft, ships and stadiums. The design and use of steel frames are commonly employed in the design of steel structures. More advanced structures include steel plates and shells.

<span class="mw-page-title-main">Tube (structure)</span> Structural system where a building is designed to act like a hollow cylinder

In structural engineering, the tube is a system where, to resist lateral loads, a building is designed to act like a hollow cylinder, cantilevered perpendicular to the ground. This system was introduced by Fazlur Rahman Khan while at the architectural firm Skidmore, Owings & Merrill (SOM), in their Chicago office. The first example of the tube's use is the 43-story Khan-designed DeWitt-Chestnut Apartment Building, since renamed Plaza on DeWitt, in Chicago, Illinois, finished in 1966.

<span class="mw-page-title-main">Open web steel joist</span> Lightweight steel truss

In structural engineering, the open web steel joist (OWSJ) is a lightweight steel truss consisting, in the standard form, of parallel chords and a triangulated web system, proportioned to span between bearing points.

<span class="mw-page-title-main">Cold-formed steel</span> Steel products shaped by cold-working processes

Cold-formed steel (CFS) is the common term for steel products shaped by cold-working processes carried out near room temperature, such as rolling, pressing, stamping, bending, etc. Stock bars and sheets of cold-rolled steel (CRS) are commonly used in all areas of manufacturing. The terms are opposed to hot-formed steel and hot-rolled steel.

<span class="mw-page-title-main">Timber roof truss</span> Structural framework of timbers

A timber roof truss is a structural framework of timbers designed to bridge the space above a room and to provide support for a roof. Trusses usually occur at regular intervals, linked by longitudinal timbers such as purlins. The space between each truss is known as a bay.

Moment-resisting frame is a rectilinear assemblage of beams and columns, with the beams rigidly connected to the columns.

<span class="mw-page-title-main">Rigid-frame bridge</span> Type of bridge

A Rigid-frame bridge is a bridge in which the superstructure and substructure are rigidly connected to act as a continuous unit. Typically, the structure is cast monolithically, making the structure continuous from deck to foundation. The connections between members are rigid connections which transfer bending moment, axial forces, and shear forces. A bridge design consisting of a rigid frame can provide significant structural benefits, but can also be difficult to design and/or construct.

This glossary of structural engineering terms pertains specifically to structural engineering and its sub-disciplines. Please see Glossary of engineering for a broad overview of the major concepts of engineering.

A structural support is a part of a building or structure that provides the necessary stiffness and strength in order to resist the internal forces and guide them safely to the ground. External loads that act on buildings cause internal forces in building support structures. Supports can be either at the end or at any intermediate point along a structural member or a constituent part of a building and they are referred to as connections, joints or restraints.

References

  1. "Portal frames". www.steelconstruction.info. Retrieved 4 April 2019.
  2. Trebilcock, Peter, and R. M. Lawson. Architectural design in steel. London: Spon Press, 2004. Print. 31.
  3. Naser Katanbafnezhad, and Alan Hoback. "Comparison of LRFD and ASD for Pre-Fabricated Gable Frame Design.
  4. Katanbafnezhad, Naser, and Alan Hoback. "Pre-Fabricated Gable Frame Design in High Snow Regions-Comparison of LRFD and ASD." AJER 9.6 (2020): 160-168.