Post-harvest losses (grains)

Last updated
Grain silos in Australia Mirrool Silos.jpg
Grain silos in Australia

Grains may be lost in the pre-harvest, harvest, and post-harvest stages. Pre-harvest losses occur before the process of harvesting begins, and may be due to insects, weeds, and rusts. Harvest losses occur between the beginning and completion of harvesting, and are primarily caused by losses due to shattering. Post-harvest losses occur between harvest and the moment of human consumption. They include on-farm losses, such as when grain is threshed, winnowed, and dried. Other on-farm losses include inadequate harvesting time, climatic conditions, practices applied at harvest and handling, and challenges in marketing produce. Significant losses are caused by inadequate storage conditions as well as decisions made at earlier stages of the supply chain, including transportation, storage, and processing, which predispose products to a shorter shelf life. [1]

Contents

Important in many developing countries, particularly in Africa, are on-farm losses during storage, when the grain is being stored for auto-consumption or while the farmer awaits a selling opportunity or a rise in prices.

Potential for loss

Grain being dried on a bamboo mat on a roadway in Chuxi Town, Cangnan County, Zhejiang, China. Drying rice in the open air creates possibilities for losses to birds. Dayu Bay - Chuxi - P1210638.JPG
Grain being dried on a bamboo mat on a roadway in Chuxi Town, Cangnan County, Zhejiang, China. Drying rice in the open air creates possibilities for losses to birds.

There is potential for loss throughout the grain harvesting and agricultural marketing chains. During stripping of maize grain from the cob, known as shelling, losses can occur when mechanical shelling is not followed up by hand-stripping of the grains that are missed. Certain shellers can damage the grain, making insect penetration easier. For crops other than maize, threshing losses occur as a result of spillage, incomplete removal of the grain or by damage to grain during the threshing. They can also occur after threshing due to poor separation of grain from the chaff during cleaning or winnowing. Incomplete threshing usually occurs in regions with high labour costs, particularly at harvest time, when labour is too scarce and expensive to justify hand-stripping after an initial mechanical thresh. Certain mechanical threshers are designed only for dry grain.

A wet season's paddy harvest may clog the screens and grain will be lost. Cleaning is essential before milling. On the farm, cleaning is usually a combination of winnowing and removal by hand of heavier items such as stones. Losses can be low when the operation is done carefully but high with carelessness. With correct equipment, cleaning losses should be low in mills, but grain may be separated together with dirt or, alternatively, dirt may be carried forward into the milling stages. In drying, grain that is dried in yards or on roads, as is common in parts of Asia, may be partially consumed by birds and rodents. Wind, either natural or from passing vehicles in the case of road drying, can blow grain away.

The main cause of loss during drying is the cracking of grain kernels that are eaten whole, such as rice. Some grains may also be lost during the drying process. However, failure to dry crops adequately can lead to much higher levels of loss than poor-quality drying, and may result in the entire harvest becoming inedible. Adequate drying by farmers is essential if grains are to be stored on-farm and poorly dried grains for the market need to be sold quickly to enable the marketing-processing chain to carry out adequate drying before the grains become spoilt. With a high moisture content, grain is susceptible to mould, heating, discoloration and a variety of chemical changes. Ideally, most grains should be dried to acceptable levels within 2–3 days of harvest. [2] One of the problems in assessing levels of post-harvest loss is in separating weight loss caused by the very necessary drying operations from weight loss caused by other, controllable, factors.

Manual rice mill in Vietnam Manual rice mill.jpg
Manual rice mill in Vietnam

Milling to remove the outer coats from a grain may take place in one or more stages. For paddy rice considerable mechanical effort is needed to remove these layers. Any weakness in the kernel will be apparent at this stage. Even with grain in perfect condition, correctly set milling and polishing machinery is essential to yield high processing outturns. Complete separation of edible from less-desired products is always difficult to achieve but, even so, there are significant differences in milling efficiency. In the case of rice, milling outturns can vary from 60% or less to around 67%, depending on the efficiency of the mill. Even a 1% increase in yield of whole grain rice can thus result in huge increases in national food resources.

Grains are produced on a seasonal basis. In many places there is only one harvest a year. Thus most production of maize, wheat, rice, sorghum, millet, etc. must be held in storage for periods varying from a few days up to more than a year. Storage therefore plays a vital role in grain supply chains. For all grains, storage losses can be considerable but the greatest losses appear to be of maize, particularly in Africa. Losses in stored grain are determined by the interaction between the grain, the storage environment and a variety of organisms.

Contamination by moulds is mainly determined by the temperature of the grain and the availability of water and oxygen. Moulds can grow over a wide range of temperatures, but the rate of growth is lower with lower temperature and less water availability. The interaction between moisture and temperature is important. Maize, for example, can be stored for one year at a moisture level of 15% and a temperature of 15 °C (59 °F). However, the same maize stored at 30 °C (86 °F) will be substantially damaged by moulds within three months. [3] Insects and mites (arthropods) can, of course, make a significant contribution towards the deterioration of grain, through the physical damage and nutrient losses caused by their activity.

They can also influence mould colonisation as carriers of mould spores and because their faecal material can be utilised as a food source by moulds. In general, grain is not infested by insects below 17 °C (63 °F) whereas mite infestations can occur between 3 and 30 °C (37 and 86 °F) and above 12% moisture content. The metabolic activity of insects and mites causes an increase in both the moisture content and temperature of infested grain. Another important factor that can affect mould growth is the proportion of broken kernels. There are about 1,700 species of rodents in the world, but only a few species contribute significantly to post-harvest losses. Three species are found throughout the world: the house mouse ( Mus musculus ), the black rat ( Rattus rattus ) and the brown rat while a few other species are important in Africa and Asia. [4]

The Black Rat (Rattus rattus) Roofrat hagenbeck 01.jpg
The Black Rat (Rattus rattus)

Actual loss

The true extent of post-harvest losses is the subject of some dispute as they are difficult to measure accurately. The worst case is found in small production in developing countries, where, according to the World Food Programme, 40% is common. [5] In Africa, post-harvest losses of maize from harvest to market sale are believed to amount to around 10-20%. Approximately 40% of these losses occur during storage at the farm and market, 30% during processing (drying, threshing, and winnowing), 20% in transport from the field to the homestead/farm, and the remaining 10% during transport to market. [6]

Loss assessment methods

An attempt should be made to approximate the magnitude of the value of losses before time is spent on trying to reduce them. If this value proves to be low, expenditure of appreciable resources on reducing losses may not be justified. [7] However, despite efforts over the years to develop acceptable techniques for measuring grain losses, this remains an imperfect science. A particular problem with measurement is that grain does not follow a uniform sequence from producer to consumer. Harvested grain can be specially dried and treated for a family's consumption or for use as seed. Some of any harvest may be held for short-term storage, some more for long-term storage, and the rest may be sold either in one go or over a period of time, through a variety of different marketing channels. [8] There are particular difficulties associated with accurately measuring on-farm storage losses over a long period when farmers are continually removing grain from stores to meet their own consumption needs. Further, the surplus generated by a farmer at any one harvest will dictate the quantity stored and the quantity sold, which, in turn, may influence loss levels. Given the lack of a consistent chain, care must be taken to avoid generalizing from particular measurements. "Inordinately high- and low-loss situations must be put into perspective rather than giving them overemphasis as has been the case in some instances." [9]

The origin and justification of grain-loss estimates has thus never been particularly well- founded and attempts to measure losses suffer from the fact that it is an extremely complex and costly exercise to do well. To get round this problem the African Postharvest Losses Information System (APHLIS), [10] was established in 2009. APHLIS generates weight loss data using an algorithm that refers to a postharvest loss profile (PLP) that is specific to the cereal crop, climate and scale of farming (smallholder or large scale) in question. The PLP is a set of loss figures, one for each link in the postharvest chain. Each PLP figure is the average of all those data available in the scientific literature for a particular crop (which include both quantitative weight loss figures and ‘informed guestimates’), under a particular climate, and at a particular scale of agriculture. Given data on production and certain other relevant seasonal data, APHLIS can provide weight loss estimates for the provinces of many countries in Sub-Saharan Africa. The data are provided in tables and as interactive maps. A further important feature of APHLIS is that it provides a version of its loss calculator that can be downloaded from the website as an Excel file. Users can change default values in the spreadsheet and make calculations of losses at any desired geographical scale below the level of ‘province’. With this calculator, users can go beyond estimation of losses at one link in the postharvest chain, e.g. just storage losses, which was the typical approach of the 1970s, and instead by substituting what figures they have for the default values in the PLP they can generate an estimate of cumulative losses from production, in other words they can see the changes in cereal grain supply that result from improving or deteriorating losses across the postharvest value chain. APHLIS thus provides data that are transparent in the way they are calculated, adjustable year by year according to circumstances, and upgradeable as more (reliable) data become available.

Attempts at loss reduction

There have been numerous attempts by donors, governments and technical assistance agencies over the years to reduce post-harvest losses in developing countries. Despite these efforts, losses are generally considered to remain high although, as noted, there are significant measurement difficulties. One problem is that while engineers have been successful in developing innovations in drying and storage these innovations are often not adopted by small farmers. This may be because farmers are not convinced of the benefits of using the technology. The costs may outweigh the perceived benefits and even if the benefits are significant the investment required from farmers may present them with a risk they are not prepared to take. Alternatively, the marketing chains may not reward farmers for introducing improvements. While good on-farm drying will lead to higher milling yields or reduced mycotoxin levels this means nothing to farmers unless they receive a premium for selling dry grains to traders and mills. This is often not the case.

Thus part of the problem with uptake may have been an overemphasis on technology, to the exclusion of socio-economic considerations. By investing in adequate sorting machines that sort grains by removing mould infested grains the grain industry can reduce losses. In the case of drying, it may be a more appropriate solution to strengthen the capacity of mills and traders to dry than attempt village-level improvements. [11] There is thus a continual need to balance and blend technically ideal procedures and approaches with social, cultural, and political realities. [12] [13] Past on-farm storage interventions that have proved less than successful have included the promotion of costly driers in W. Africa that fell victim to termites when made with local wood or bamboo and were too expensive when constructed with sawn wood. In the 1980s, there was considerable enthusiasm for the introduction of ferro-cement and brick bins throughout Africa, but these were often found to be too complicated for farmers to construct, and too costly. Small Breeze block silos also experienced construction difficulties and were found to be not economically feasible. Storage cribs made of wood and chicken-wire were introduced by donors but rejected by farmers because sides made of chicken wire showed others the size of each farmer's harvest.

More positive achievements have been recorded in the Central African Republic, using a simple 1-tonne capacity structure that was found by farmers to be easy to construct and proved popular even without donor subsidies. Considerable success has been reportedly achieved with metal bins over the last 20 years in Central America [14] [15] and metal bins have been widely used for grain storage in Eswatini for half a century, drawing on the availability of local entrepreneurs who had been supplying metal water tanks. Replication of this success in other parts of Africa is very much in the pilot stage. Difficulties include the lack of local craftsmen to fabricate the bins; the need for grain stored in such bins to be dried to 14 °C (57 °F), and problems with carrying out the necessary fumigation. Small-scale bins for use inside the home appear to be having more success than larger bins for outside use. A relatively new development is hermetically sealed bags, which appear to offer good possibilities to store a variety of quantities, although further socio-economic evaluation is still required. The Purdue Improved Cowpea Storage (PICS) bags are hermetically sealed bags that allow small-scale farmers/users to store cowpea without any use of chemicals. [16] Similarly, the International Rice Research Institute (IRRI) and US-based GrainPro Inc. have collaborated to develop hermetic storage bags referred as IRRI bags but widely known today as GrainPro SuperGrainbag that offers the lowest water vapor transmission rate and oxygen transmission rate of any hermetic bags available in the market. [17]

Sources

Definition of Free Cultural Works logo notext.svg  This article incorporates text from a free content work. Licensed under CC BY-SA 3.0( license statement/permission ). Text taken from The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction, In brief , 24, FAO, FAO. To learn how to add open license text to Wikipedia articles, please see this how-to page. For information on reusing text from Wikipedia, please see the terms of use.

Related Research Articles

<span class="mw-page-title-main">Cereal</span> Grass that has edible grain or fruit

A cereal is any grass cultivated for the edible components of its grain, composed of the endosperm, germ, and bran. Cereal grain crops are grown in greater quantities and provide more food energy worldwide than any other type of crop and are therefore staple crops. They include wheat, rye, oats, and barley. Edible grains from other plant families, such as buckwheat, quinoa and chia, are referred to as pseudocereals.

<i>Eleusine coracana</i> Species of grass

Eleusine coracana, or finger millet, also known as ragi in India, kodo in Nepal, is an annual herbaceous plant widely grown as a cereal crop in the arid and semiarid areas in Africa and Asia. It is a tetraploid and self-pollinating species probably evolved from its wild relative Eleusine africana.

<span class="mw-page-title-main">Oat</span> Species of plant

The oat, sometimes called the common oat, is a species of cereal grain grown for its seed, which is known by the same name. While oats are suitable for human consumption as oatmeal and rolled oats, one of the most common uses is as livestock feed. Oats are a nutrient-rich food associated with lower blood cholesterol when consumed regularly.

<span class="mw-page-title-main">Teff</span> Edible annual grass native to the Horn of Africa

Eragrostis tef, also known as teff, Williams lovegrass or annual bunch grass, is an annual grass, a species of lovegrass native to the Horn of Africa, notably to modern-day Ethiopia. It is cultivated for its edible seeds, also known as teff. Teff was one of the earliest plants domesticated. It is one of the most important staple crops in Ethiopia and Eritrea.

<span class="mw-page-title-main">Barn</span> Agricultural building used for storage and as a covered workplace

A barn is an agricultural building usually on farms and used for various purposes. In North America, a barn refers to structures that house livestock, including cattle and horses, as well as equipment and fodder, and often grain. As a result, the term barn is often qualified e.g. tobacco barn, dairy barn, cow house, sheep barn, potato barn. In the British Isles, the term barn is restricted mainly to storage structures for unthreshed cereals and fodder, the terms byre or shippon being applied to cow shelters, whereas horses are kept in buildings known as stables. In mainland Europe, however, barns were often part of integrated structures known as byre-dwellings. In addition, barns may be used for equipment storage, as a covered workplace, and for activities such as threshing.

<span class="mw-page-title-main">Food storage</span> Type of storage that allows food to be eaten after time

Food storage is a way of decreasing the variability of the food supply in the face of natural, inevitable variability. It allows food to be eaten for some time after harvest rather than solely immediately. It is both a traditional domestic skill and, in the form of food logistics, an important industrial and commercial activity. Food preservation, storage, and transport, including timely delivery to consumers, are important to food security, especially for the majority of people throughout the world who rely on others to produce their food.

<span class="mw-page-title-main">Threshing</span> Separating edible grain from straw

Threshing, or thrashing, is the process of loosening the edible part of grain from the straw to which it is attached. It is the step in grain preparation after reaping. Threshing does not remove the bran from the grain.

<i>Digitaria exilis</i> Species of grass

Digitaria exilis, referred to as findi or fundi in areas of Africa, such as The Gambia, with English common names white fonio, fonio millet, and hungry rice or acha rice, is a grass species. It is the most important of a diverse group of wild and domesticated Digitaria species known as fonio that are harvested in the savannas of West Africa. The grains are very small. It has potential to improve nutrition, boost food security, foster rural development and support sustainable use of the land. Despite its valuable characteristics and widespread cultivation, fonio has generally received limited research and development attention, which is also why the species is sometimes referred to as an underutilized crop.

<span class="mw-page-title-main">Postharvest</span> Stage of crop production immediately after harvest

In agriculture, postharvest handling is the stage of crop production immediately following harvest, including cooling, cleaning, sorting and packing. The instant a crop is removed from the ground, or separated from its parent plant, it begins to deteriorate. Postharvest treatment largely determines final quality, whether a crop is sold for fresh consumption, or used as an ingredient in a processed food product.

<span class="mw-page-title-main">Food loss and waste</span> Food that is discarded, lost or uneaten

Food loss and waste is food that is not eaten. The causes of food waste or loss are numerous and occur throughout the food system, during production, processing, distribution, retail and food service sales, and consumption. Overall, about one-third of the world's food is thrown away. A 2021 metaanalysis that did not include food lost during production, by the United Nations Environment Programme found that food waste was a challenge in all countries at all levels of economic development. The analysis estimated that global food waste was 931 million tonnes of food waste across three sectors: 61 per cent from households, 26 per cent from food service and 13 per cent from retail.

<span class="mw-page-title-main">Intensive crop farming</span>

Intensive crop farming is a modern industrialized form of crop farming. Intensive crop farming's methods include innovation in agricultural machinery, farming methods, genetic engineering technology, techniques for achieving economies of scale in production, the creation of new markets for consumption, patent protection of genetic information, and global trade. These methods are widespread in developed nations.

<span class="mw-page-title-main">Post-harvest losses (vegetables)</span> Losses in quantity and quality of produce before consumer purchase

Post-harvest losses of vegetables and fruit occur at all points in the value chain from production in the field to the food being placed on a plate for consumption. Post-harvest activities include harvesting, handling, storage, processing, packaging, transportation and marketing.

<i>Prostephanus truncatus</i> Species of beetle

Prostephanus truncatus is commonly referred to as larger grain bore (LGB) with reference to the related Rhyzopertha dominica, another insect, which is relatively smaller in length, hence is referred to as the lesser grain bore. P. truncatus is about 6 mm (0.24 in) long as compared to 3 mm (0.12 in) long in Rh. dominica. At optimum conditions of 80% relative humidity and 32 °C (90 °F), and available food, P. truncatus completes its lifecycle within 27 days. It is a serious pest of dried grains, especially maize and dried cassava in West Africa. This beetle is believed to have been introduced into West Africa through food aid from America. It reached Africa through Tanzania in the early 1970s.

Grain damage is any degradation in the quality of grain. In the current grain trade, this damage can affect price, feed quality, food product quality, and susceptibility to pest contamination. Between the field and the end use, grain may go through any number of handling operations which can each contribute to grain damage. For example, grain might encounter free fall, conveyors, spouts, grain throwers, elevators, hoppers, dryers, and many more. Overall, these handling methods can be evaluated as to what effect they have on the grain. Damaged grain can often be characterized by the extent to which it reduces storage time. For example, cracked or broken kernels are more susceptible to insect or bacteria as well as chemical degradation. The damage to the actual grain is only one example of losses incurred after harvest. In order to quantify grain damage, one must also understand grain quality. Grain quality is a very broad term and can relate to many topics such as foreign material, chemical compositions, mechanical damage, insect infestations, and many more. These references to quality are highly dependent on the end use of the grain. Certain types of damage may be acceptable to specific industries, whereas others cannot use grain with these issues.

Purdue Improved Crop Storage (PICS) bags provide a simple, low-cost method of reducing post-harvest cowpea losses due to bruchid infestations in west and central Africa. Bags have been demonstrated to be effective for several other crops.

The sweet potato is a very important crop for subsistence farmers in Africa and other developing countries. Its relatively short growing period, tolerance to drought and high yield from poor soils lead to its use as a famine reserve for many of these households. However, it is a highly perishable food source that is susceptible to destruction by microorganisms, metabolic spoilage, physical destruction and pests. Therefore, it is not generally stored for long after harvest. This is a major barrier for the optimal use of the crop and causes much waste.

Grain drying is process of drying grain to prevent spoilage during storage. The grain drying described in this article is that which uses fuel- or electric-powered processes supplementary to natural ones, including swathing/windrowing for drying by ambient air and sunshine, or stooking before threshing.

<span class="mw-page-title-main">Staple food</span> Food that is eaten routinely and considered a dominant portion of a standard diet

A staple food, food staple, or simply a staple, is a food that is eaten often and in such quantities that it constitutes a dominant portion of a standard diet for a given person or group of people, supplying a large fraction of energy needs and generally forming a significant proportion of the intake of other nutrients as well. A staple food of a specific society may be eaten as often as every day or every meal, and most people live on a diet based on just a small number of food staples. Specific staples vary from place to place, but typically are inexpensive or readily available foods that supply one or more of the macronutrients and micronutrients needed for survival and health: carbohydrates, proteins, fats, minerals, and vitamins. Typical examples include tubers and roots, grains, legumes, and seeds. Among them, cereals, legumes, tubers, and roots account for about 90% of the world's food calories intake.

Grain storage on a subsistence farm is primarily based on minimizing grain loss. In modern agricultural practices there are methods of managing under 1% grain loss, but small subsistence farms can see 20% - 100% of grain loss. This causes starvation and an unstable food supply. Grain loss can be caused by mold growth, bugs, birds, or any other contamination.

This glossary of agriculture is a list of definitions of terms and concepts used in agriculture, its sub-disciplines, and related fields. For other glossaries relevant to agricultural science, see Glossary of biology, Glossary of ecology, Glossary of environmental science, and Glossary of botany.

References

  1. FAO (2019). In brief: The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction. Rome. p. 12.
  2. Harris, Kenton L. and Carl J. Lindblad, eds. Postharvest Grain Loss Assessment Methods - A Manual of Methods for the Evaluation of Postharvest Losses American Association of Cereals Chemists, 1976
  3. Proctor, D.L., Grain Storage Techniques FAO, Rome, 1994
  4. Proctor, D.L., Grain Storage Techniques FAO, Rome, 1994
  5. "Post-Harvest Loss Reduction". World Food Programme Innovation. 2020-04-17. Retrieved 2021-04-01.
  6. African Post Harvest Losses Information System (APHLIS)
  7. Greeley M. and G. W. Harman, Losses and the Economist. Chapter VIII in Kenton L. Harris and Carl J. Lindblad, eds. Postharvest Grain Loss Assessment Methods - A Manual of Methods for the Evaluation of Postharvest Losses American Association of Cereals Chemists, 1976
  8. Kenton L. Harris and Carl J. Lindblad, eds. Postharvest Grain Loss Assessment Methods - A Manual of Methods for the Evaluation of Postharvest Losses American Association of Cereals Chemists, 1976
  9. K. L. Harris, W. J. Hoover, C. J. Lindblad, and H. Pfost, An Overview of the Postharvest System: The Food Grain Supply Pipeline (Determining the Interrelationship and Relative Magnitude of Losses) in Kenton L. Harris and Carl J. Lindblad, eds. Postharvest Grain Loss Assessment Methods - A Manual of Methods for the Evaluation of Postharvest Losses. American Association of Cereals Chemists, 1976
  10. African Post Harvest Losses Information System (APHLIS)
  11. Shepherd, Andrew W. (1993) Economic and marketing aspects of post-harvest handling of grains FAO, Rome
  12. Reining,C.C. Anthropological Signposts, Chapter 3 in Kenton L. Harris and Carl J. Lindblad, eds. Postharvest Grain Loss Assessment Methods - A Manual of Methods for the Evaluation of Postharvest Losses. American Association of Cereals Chemists, 1976
  13. Shepherd, Andrew W. (2012) Grain Storage in Africa: Learning from past experiences. Food Chain 2(2) 149-163.
  14. of the Swiss Agency for Development and Cooperation (SDC)
  15. FAO, (2008). Household metal silos., FAO, Rome
  16. "Purdue Postharvest | Purdue University".
  17. "Post Harvest Handling & Storage Solutions | GrainPro".