Predictive learning

Last updated

Predictive learning is a machine learning (ML) technique where an artificial intelligence model is fed new data to develop an understanding of its environment, capabilities, and limitations. This technique finds application in many areas, including neuroscience, business, robotics, and computer vision. This concept was developed and expanded by French computer scientist Yann LeCun in 1988 during his career at Bell Labs, where he trained models to detect handwriting so that financial companies could automate check processing. [1]

Contents

The mathematical foundation for predictive learning dates back to the 17th century, where British insurance company Lloyd's used predictive analytics to make a profit. [2] Starting out as a mathematical concept, this method expanded the possibilities of artificial intelligence. Predictive learning is an attempt to learn with a minimum of pre-existing mental structure. It was inspired by Jean Piaget's account of children constructing knowledge of the world through interaction. Gary Drescher's book Made-up Minds was crucial to the development of this concept. [3]

The idea that predictions and unconscious inference are used by the brain to construct a model of the world, in which it can identify causes of percepts, goes back even further to Hermann von Helmholtz's iteration of this study. These ideas were further developed by the field of predictive coding. Another related predictive learning theory is Jeff Hawkins' memory-prediction framework, which is laid out in his book On Intelligence .

Mathematical procedures

Training process

Similar to ML, predictive learning aims to extrapolate the value of an unknown dependent variable , given independent input data . A set of attributes can be classified into categorical data (discrete factors such as race, sex, or affiliation) or numerical data (continuous values such as temperature, annual income, or speed). Every set of input values is fed into a neural network to predict a value . In order to predict the output accurately, the weights of the neural network (which represent how much each predictor variable affects the outcome) must be incrementally adjusted via backpropagation to produce estimates closer to the actual data.

Once an ML model is given enough adjustments through training to predict values closer to the ground truth, it should be able to correctly predict outputs of new data with little error.

Maximizing accuracy

In order to ensure maximum accuracy for a predictive learning model, the predicted values must not exceed a certain error threshold when compared to actual values by the risk formula:

,

where is the loss function, is the ground truth, and is the predicted data. This error function is used to make incremental adjustments to the model's weights to eventually reach a well-trained prediction of: [4]

Once the error is negligible or considered small enough after training, the model is said to have converged.

Ensemble learning

In some cases, using a singular machine learning approach is not enough to create an accurate estimate for certain data. Ensemble learning is the combination of several ML algorithms to create a stronger model. Each model is represented by the function

,

where is the number of ensemble models, is the bias, is the weight corresponding to each -th variable, and is the activation function corresponding to each variable. An ensemble learning model is represented as a linear combination of the predictions from each constituent approach,

where is the actual value, the second parameter is the value predicted by each constituent method, and is a coefficient representing each model's variation for a certain predictor variable. [4]

Applications

Cognitive development

Dr. Yukie Nagai's predictive learning architecture for predicting sensorimotor signals Rstb20180030f01.gif
Dr. Yukie Nagai's predictive learning architecture for predicting sensorimotor signals

Sensorimotor signals are neural impulses sent to the brain upon physical touch. Using predictive learning to detect sensorimotor signals plays a key role in early cognitive development, as the human brain represents sensorimotor signals in a predictive manner (it attempts to minimize prediction error between incoming sensory signals and top–down prediction). In order to update an unadjusted predictor, it must be trained through sensorimotor experiences because it does not inherently have prediction ability. [5] In a recent research paper, Dr. Yukie Nagai suggested a new architecture in predictive learning to predict sensorimotor signals based on a two-module approach: a sensorimotor system which interacts with the environment and a predictor which simulates the sensorimotor system in the brain. [5]

Spatiotemporal memory

Computers use predictive learning in spatiotemporal memory to completely create an image given constituent frames. This implementation uses predictive recurrent neural networks, which are neural networks designed to work with sequential data, such as a time series.[ citation needed ] Using predictive learning in conjunction with computer vision enables computers to create images of their own, which can be helpful when replicating sequential phenomena such as replicating DNA strands, face recognition, or even creating X-ray images.

Social media consumer behavior

In a recent study, data on consumer behavior was collected from various social media platforms such as Facebook, Twitter, LinkedIn, YouTube, Instagram, and Pinterest. The usage of predictive learning analytics led researchers to discover various trends in consumer behavior, such as determining how successful a campaign could be, estimating a fair price for a product to attract consumers, assessing how secure data is, and analyzing the specific audience of the consumers they could target for specific products. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Supervised learning</span> Paradigm in machine learning

Supervised learning (SL) is a paradigm in machine learning where input objects and a desired output value train a model. The training data is processed, building a function that maps new data to expected output values. An optimal scenario will allow for the algorithm to correctly determine output values for unseen instances. This requires the learning algorithm to generalize from the training data to unseen situations in a "reasonable" way. This statistical quality of an algorithm is measured through the so-called generalization error.

<span class="mw-page-title-main">Least squares</span> Approximation method in statistics

The method of least squares is a parameter estimation method in regression analysis based on minimizing the sum of the squares of the residuals made in the results of each individual equation.

Pattern recognition is the task of assigning a class to an observation based on patterns extracted from data. While similar, pattern recognition (PR) is not to be confused with pattern machines (PM) which may possess (PR) capabilities but their primary function is to distinguish and create emergent patterns. PR has applications in statistical data analysis, signal processing, image analysis, information retrieval, bioinformatics, data compression, computer graphics and machine learning. Pattern recognition has its origins in statistics and engineering; some modern approaches to pattern recognition include the use of machine learning, due to the increased availability of big data and a new abundance of processing power.

Forecasting is the process of making predictions based on past and present data. Later these can be compared with what actually happens. For example, a company might estimate their revenue in the next year, then compare it against the actual results creating a variance actual analysis. Prediction is a similar but more general term. Forecasting might refer to specific formal statistical methods employing time series, cross-sectional or longitudinal data, or alternatively to less formal judgmental methods or the process of prediction and assessment of its accuracy. Usage can vary between areas of application: for example, in hydrology the terms "forecast" and "forecasting" are sometimes reserved for estimates of values at certain specific future times, while the term "prediction" is used for more general estimates, such as the number of times floods will occur over a long period.

<span class="mw-page-title-main">Regression analysis</span> Set of statistical processes for estimating the relationships among variables

In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable and one or more error-free independent variables. The most common form of regression analysis is linear regression, in which one finds the line that most closely fits the data according to a specific mathematical criterion. For example, the method of ordinary least squares computes the unique line that minimizes the sum of squared differences between the true data and that line. For specific mathematical reasons, this allows the researcher to estimate the conditional expectation of the dependent variable when the independent variables take on a given set of values. Less common forms of regression use slightly different procedures to estimate alternative location parameters or estimate the conditional expectation across a broader collection of non-linear models.

In machine learning, feature selection is the process of selecting a subset of relevant features for use in model construction. Feature selection techniques are used for several reasons:

Random forests or random decision forests is an ensemble learning method for classification, regression and other tasks that works by creating a multitude of decision trees during training. For classification tasks, the output of the random forest is the class selected by most trees. For regression tasks, the output is the average of the predictions of the trees. Random forests correct for decision trees' habit of overfitting to their training set.

<span class="mw-page-title-main">Coefficient of determination</span> Indicator for how well data points fit a line or curve

In statistics, the coefficient of determination, denoted R2 or r2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

<span class="mw-page-title-main">Granger causality</span> Statistical hypothesis test for forecasting

The Granger causality test is a statistical hypothesis test for determining whether one time series is useful in forecasting another, first proposed in 1969. Ordinarily, regressions reflect "mere" correlations, but Clive Granger argued that causality in economics could be tested for by measuring the ability to predict the future values of a time series using prior values of another time series. Since the question of "true causality" is deeply philosophical, and because of the post hoc ergo propter hoc fallacy of assuming that one thing preceding another can be used as a proof of causation, econometricians assert that the Granger test finds only "predictive causality". Using the term "causality" alone is a misnomer, as Granger-causality is better described as "precedence", or, as Granger himself later claimed in 1977, "temporally related". Rather than testing whether Xcauses Y, the Granger causality tests whether X forecastsY.

<span class="mw-page-title-main">Regularization (mathematics)</span> Technique to make a model more generalizable and transferable

In mathematics, statistics, finance, and computer science, particularly in machine learning and inverse problems, regularization is a process that converts the answer of a problem to a simpler one. It is often used in solving ill-posed problems or to prevent overfitting.

In machine learning, multi-label classification or multi-output classification is a variant of the classification problem where multiple nonexclusive labels may be assigned to each instance. Multi-label classification is a generalization of multiclass classification, which is the single-label problem of categorizing instances into precisely one of several classes. In the multi-label problem the labels are nonexclusive and there is no constraint on how many of the classes the instance can be assigned to.

The root mean square deviation (RMSD) or root mean square error (RMSE) is either one of two closely related and frequently used measures of the differences between true or predicted values on the one hand and observed values or an estimator on the other. The deviation is typically simply a differences of scalars; it can also be generalized to the vector lengths of a displacement, as in the bioinformatics concept of root mean square deviation of atomic positions.

Group method of data handling (GMDH) is a family of inductive algorithms for computer-based mathematical modeling of multi-parametric datasets that features fully automatic structural and parametric optimization of models.

Demand forecasting, also known as demand planning and sales forecasting (DP&SF), involves the prediction of the quantity of goods and services that will be demanded by consumers or business customers at a future point in time. More specifically, the methods of demand forecasting entail using predictive analytics to estimate customer demand in consideration of key economic conditions. This is an important tool in optimizing business profitability through efficient supply chain management. Demand forecasting methods are divided into two major categories, qualitative and quantitative methods:

Gradient boosting is a machine learning technique based on boosting in a functional space, where the target is pseudo-residuals instead of residuals as in traditional boosting. It gives a prediction model in the form of an ensemble of weak prediction models, i.e., models that make very few assumptions about the data, which are typically simple decision trees. When a decision tree is the weak learner, the resulting algorithm is called gradient-boosted trees; it usually outperforms random forest. As with other boosting methods, a gradient-boosted trees model is built in stages, but it generalizes the other methods by allowing optimization of an arbitrary differentiable loss function.

There are many types of artificial neural networks (ANN).

System identification is a method of identifying or measuring the mathematical model of a system from measurements of the system inputs and outputs. The applications of system identification include any system where the inputs and outputs can be measured and include industrial processes, control systems, economic data, biology and the life sciences, medicine, social systems and many more.

In statistics, linear regression is a model that estimates the linear relationship between a scalar response and one or more explanatory variables. A model with exactly one explanatory variable is a simple linear regression; a model with two or more explanatory variables is a multiple linear regression. This term is distinct from multivariate linear regression, which predicts multiple correlated dependent variables rather than a single dependent variable.

Sparse dictionary learning is a representation learning method which aims to find a sparse representation of the input data in the form of a linear combination of basic elements as well as those basic elements themselves. These elements are called atoms, and they compose a dictionary. Atoms in the dictionary are not required to be orthogonal, and they may be an over-complete spanning set. This problem setup also allows the dimensionality of the signals being represented to be higher than any one of the signals being observed. These two properties lead to having seemingly redundant atoms that allow multiple representations of the same signal, but also provide an improvement in sparsity and flexibility of the representation.

<span class="mw-page-title-main">Learning curve (machine learning)</span> Plot of machine learning model performance over time or experience

In machine learning (ML), a learning curve is a graphical representation that shows how a model's performance on a training set changes with the number of training iterations (epochs) or the amount of training data. Typically, the number of training epochs or training set size is plotted on the x-axis, and the value of the loss function on the y-axis.

References

  1. "Yann LeCun "Predictive Learning: The Next Frontier in AI"". Nokia Bell Labs. 2017-02-17. Retrieved 2023-11-04.
  2. Corporation, Predictive Success (2019-05-06). "A Brief History of Predictive Analytics". Medium. Retrieved 2023-10-27.
  3. Drescher, Gary L. (1991). Made-up Minds: A Constructivist Approach to Artificial Intelligence. MIT Press. ISBN   978-0-262-04120-1.
  4. 1 2 Friedman, Jerome H.; Popescu, Bogdan E. (2008-09-17). "Predictive learning via rule ensembles". The Annals of Applied Statistics. 2 (3): 916–954. arXiv: 0811.1679 . doi: 10.1214/07-AOAS148 . ISSN   1932-6157.
  5. 1 2 Nagai, Yukie (2019-04-29). "Predictive learning: its key role in early cognitive development". Philosophical Transactions of the Royal Society B: Biological Sciences. 374 (1771): 20180030. doi:10.1098/rstb.2018.0030. ISSN   0962-8436. PMC   6452246 . PMID   30852990.
  6. Chaudhary, Kiran; Alam, Mansaf; Al-Rakhami, Mabrook S.; Gumaei, Abdu (2021-05-25). "Machine learning-based mathematical modelling for prediction of social media consumer behavior using big data analytics". Journal of Big Data. 8 (1): 73. doi: 10.1186/s40537-021-00466-2 . ISSN   2196-1115.