Pressure jump

Last updated

Pressure jump is a technique used in the study of chemical kinetics. It involves making rapid changes to the pressure of an experimental system and observing the return to equilibrium or steady state. This allows the study of the shift in equilibrium of reactions that equilibrate in periods between milliseconds to hours (or longer), [1] these changes often being observed using absorption spectroscopy, or fluorescence spectroscopy though other spectroscopic techniques such as CD, [2] FTIR [3] or NMR [4] can also be used.

Chemical kinetics, also known as reaction kinetics, is the study of rates of chemical processes. Chemical kinetics includes investigations of how different experimental conditions can influence the speed of a chemical reaction and yield information about the reaction's mechanism and transition states, as well as the construction of mathematical models that can describe the characteristics of a chemical reaction.

In a chemical reaction, chemical equilibrium is the state in which both reactants and products are present in concentrations which have no further tendency to change with time, so that there is no observable change in the properties of the system. Usually, this state results when the forward reaction proceeds at the same rate as the reverse reaction. The reaction rates of the forward and backward reactions are generally not zero, but equal. Thus, there are no net changes in the concentrations of the reactant(s) and product(s). Such a state is known as dynamic equilibrium.

In chemistry, a steady state is a situation in which all state variables are constant in spite of ongoing processes that strive to change them. For an entire system to be at steady state, i.e. for all state variables of a system to be constant, there must be a flow through the system. A simple example of such a system is the case of a bathtub with the tap running but with the drain unplugged: after a certain time, the water flows in and out at the same rate, so the water level stabilizes and the system is in a steady state.

Historically, pressure jumps were limited to one direction. Most commonly fast drops in pressure were achieved by using a quick release valve or a fast burst membrane. [5] Modern equipment can achieve pressure changes in both directions using either double reservoir arrangements [6] (good for large changes in pressure) or pistons operated by piezoelectric actuators [7] (often faster than valve based approaches). Ultra fast pressure drops can be achieved using electrically disintegrated burst membranes. [8] The ability to automatically repeat measurements and average the results is useful since the reaction amplitudes are often small.

The fractional extent of the reaction (i.e. the percentage change in concentration of a measurable species) depends on the molar volume change (ΔV°) between the reactants and products and the equilibrium position. If K is the equilibrium constant and P is the pressure then the volume change is given by:

where R is the universal gas constant and T is the absolute temperature. The volume change can thus be understood to be the pressure dependency of the change in Gibbs free energy associated with the reaction.

The gas constant is also known as the molar, universal, or ideal gas constant, denoted by the symbol R or R and is equivalent to the Boltzmann constant, but expressed in units of energy per temperature increment per mole, i.e. the pressure–volume product, rather than energy per temperature increment per particle. The constant is also a combination of the constants from Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law. It is a physical constant that is featured in many fundamental equations in the physical sciences, such as the ideal gas law and the Nernst equation.

Thermodynamic temperature Absolute measure of temperature

Thermodynamic temperature is the absolute measure of temperature and is one of the principal parameters of thermodynamics.

Gibbs free energy gibbs energy of formation

In thermodynamics, the Gibbs free energy is a thermodynamic potential that can be used to calculate the maximum of reversible work that may be performed by a thermodynamic system at a constant temperature and pressure. The Gibbs free energy is the maximum amount of non-expansion work that can be extracted from a thermodynamically closed system ; this maximum can be attained only in a completely reversible process. When a system transforms reversibly from an initial state to a final state, the decrease in Gibbs free energy equals the work done by the system to its surroundings, minus the work of the pressure forces.

When a single step in a reaction is perturbed in a pressure jump experiment, the reaction follows a single exponential decay function with the reciprocal time constant (1/τ) equal to the sum of the forward and reverse intrinsic rate constants. In more complex reaction networks, when multiple reaction steps are perturbed, then the reciprocal time constants are given by the eigenvalues of the characteristic rate equations. The ability to observe intermediate steps in a reaction pathway is one of the attractive features of this technology. [9]

Exponential decay probability density

A quantity is subject to exponential decay if it decreases at a rate proportional to its current value. Symbolically, this process can be expressed by the following differential equation, where N is the quantity and λ (lambda) is a positive rate called the exponential decay constant:

In physics and engineering, the time constant, usually denoted by the Greek letter τ (tau), is the parameter characterizing the response to a step input of a first-order, linear time-invariant (LTI) system. The time constant is the main characteristic unit of a first-order LTI system.

Related Research Articles

Enzyme biological molecule

Enzymes are macromolecular biological catalysts. Enzymes accelerate chemical reactions. The molecules upon which enzymes may act are called substrates and the enzyme converts the substrates into different molecules known as products. Almost all metabolic processes in the cell need enzyme catalysis in order to occur at rates fast enough to sustain life. Metabolic pathways depend upon enzymes to catalyze individual steps. The study of enzymes is called enzymology and a new field of pseudoenzyme analysis has recently grown up, recognising that during evolution, some enzymes have lost the ability to carry out biological catalysis, which is often reflected in their amino acid sequences and unusual 'pseudocatalytic' properties.

Molecular dynamics Computer simulations to discover and understand chemical properties

Molecular dynamics (MD) is a computer simulation method for studying the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic evolution of the system. In the most common version, the trajectories of atoms and molecules are determined by numerically solving Newton's equations of motion for a system of interacting particles, where forces between the particles and their potential energies are often calculated using interatomic potentials or molecular mechanics force fields. The method was originally developed within the field of theoretical physics in the late 1950s but is applied today mostly in chemical physics, materials science and the modelling of biomolecules.

Atomic force microscopy very high-resolution type of scanning probe microscopy

Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the optical diffraction limit.

Host–guest chemistry [[Supramolecular chemistry|Supramolecular structures]] held together other than by covalent bonds

In supramolecular chemistry, host–guest chemistry describes complexes that are composed of two or more molecules or ions that are held together in unique structural relationships by forces other than those of full covalent bonds. Host–guest chemistry encompasses the idea of molecular recognition and interactions through non-covalent bonding. Non-covalent bonding is critical in maintaining the 3D structure of large molecules, such as proteins and is involved in many biological processes in which large molecules bind specifically but transiently to one another. There are four commonly mentioned types of non-covalent interactions: hydrogen bonds, ionic bonds, van der Waals forces, and hydrophobic interactions.

Enzyme assay laboratory method for measuring enzymatic activity; vital for the study of enzyme kinetics and enzyme inhibition

Enzyme assays are laboratory methods for measuring enzymatic activity. They are vital for the study of enzyme kinetics and enzyme inhibition.

Enzyme kinetics

Enzyme kinetics is the study of the chemical reactions that are catalysed by enzymes. In enzyme kinetics, the reaction rate is measured and the effects of varying the conditions of the reaction are investigated. Studying an enzyme's kinetics in this way can reveal the catalytic mechanism of this enzyme, its role in metabolism, how its activity is controlled, and how a drug or an agonist might inhibit the enzyme.

Nuclear magnetic resonance spectroscopy of proteins is a field of structural biology in which NMR spectroscopy is used to obtain information about the structure and dynamics of proteins, and also nucleic acids, and their complexes. The field was pioneered by Richard R. Ernst and Kurt Wüthrich at the ETH, and by Ad Bax, Marius Clore, and Angela Gronenborn at the NIH, among others. Structure determination by NMR spectroscopy usually consists of several phases, each using a separate set of highly specialized techniques. The sample is prepared, measurements are made, interpretive approaches are applied, and a structure is calculated and validated.

The temperature jump method is a technique used in chemical kinetics for the measurement of very rapid reaction rates. It is one of a class of chemical relaxation methods pioneered by the German physical chemist Manfred Eigen in the 1950s. In these methods, a reacting system initially at equilibrium is perturbed rapidly and then observed as it relaxes back to equilibrium. In the case of temperature jump, the perturbation involves rapid heating which changes the value of the equilibrium constant, followed by relaxation to equilibrium at the new temperature.

In probability theory, the Gillespie algorithm generates a statistically correct trajectory of a stochastic equation. It was created by Joseph L. Doob and others, presented by Dan Gillespie in 1976, and popularized in 1977 in a paper where he uses it to simulate chemical or biochemical systems of reactions efficiently and accurately using limited computational power. As computers have become faster, the algorithm has been used to simulate increasingly complex systems. The algorithm is particularly useful for simulating reactions within cells, where the number of reagents is low and keeping track of the position and behaviour of individual molecules is computationally feasible. Mathematically, it is a variant of a dynamic Monte Carlo method and similar to the kinetic Monte Carlo methods. It is used heavily in computational systems biology.

Hydrogen–deuterium exchange is a chemical reaction in which a covalently bonded hydrogen atom is replaced by a deuterium atom, or vice versa. It can be applied most easily to exchangeable protons and deuterons, where such a transformation occurs in the presence of a suitable deuterium source, without any catalyst. The use of acid, base or metal catalysts, coupled with conditions of increased temperature and pressure, can facilitate the exchange of non-exchangeable hydrogen atoms, so long as the substrate is robust to the conditions and reagents employed. This often results in perdeuteration: hydrogen-deuterium exchange of all non-exchangeable hydrogen atoms in a molecule.

Stopped-flow

Stopped-flow is a lab technique for studying fast chemical reactions.

Chevron plot

A chevron plot is a way of representing protein folding kinetic data in the presence of varying concentrations of denaturant that disrupts the protein's native tertiary structure. The plot is known as "chevron" plot because of the canonical v, or chevron shape observed when the logarithm of the observed relaxation rate is plotted as a function of the denaturant concentration.

Downhill folding is a process in which a protein folds without encountering any significant macroscopic free energy barrier. It is a key prediction of the folding funnel hypothesis of the energy landscape theory of proteins.

Enzyme catalysis catalysis of chemical reactions by specialized proteins known as enzymes

Enzyme catalysis is the increase in the rate of a process by a biological molecule, an "enzyme". Most enzymes are proteins, and most such processes are chemical reactions. Within the enzyme, generally catalysis occurs at a localized site, called the active site.

Physical organic chemistry, a term coined by Louis Hammett in 1940, refers to a discipline of organic chemistry that focuses on the relationship between chemical structures and reactivity, in particular, applying experimental tools of physical chemistry to the study of organic molecules. Specific focal points of study include the rates of organic reactions, the relative chemical stabilities of the starting materials, reactive intermediates, transition states, and products of chemical reactions, and non-covalent aspects of solvation and molecular interactions that influence chemical reactivity. Such studies provide theoretical and practical frameworks to understand how changes in structure in solution or solid-state contexts impact reaction mechanism and rate for each organic reaction of interest.

Transition path sampling (TPS) is a Rare Event Sampling method used in computer simulations of rare events: physical or chemical transitions of a system from one stable state to another that occur too rarely to be observed on a computer timescale. Examples include protein folding, chemical reactions and nucleation. Standard simulation tools such as molecular dynamics can generate the dynamical trajectories of all the atoms in the system. However, because of the gap in accessible time-scales between simulation and reality, even present supercomputers might require years of simulations to show an event that occurs once per microsecond without some kind of acceleration.

Protein dynamics

Proteins are generally thought to adopt unique structures determined by their amino acid sequences, as outlined by Anfinsen's dogma. However, proteins are not strictly static objects, but rather populate ensembles of conformations. Transitions between these states occur on a variety of length scales and time scales, and have been linked to functionally relevant phenomena such as allosteric signaling and enzyme catalysis.

Victor Muñoz is a biochemist whose focus has been on protein folding and design. He provided experimental evidence for a mechanism of protein folding called as "downhill folding". He has pioneered various computational and experimental techniques to study this mechanism as well as to gain insights into the general process of protein folding.

In chemistry, NMR line broadening techniques can be used to determine the rate constant and the Gibbs free energy of exchange reactions of two different chemical compounds. If the two species are in equilibrium and exchange to each other, peaks of both species get broadened in the spectrum. This observation of broadened peaks can be used to obtain kinetic and thermodynamic information of the exchange reaction.

References

  1. This contrasts with temperature jump in which cooling curves typically limit the time window to a minute or so.
  2. Gruenewald B, Knoche W (1978). "Pressure jump method with detection of optical-rotation and circular-dichroism". Review of Scientific Instruments. 49: 797–801. Bibcode:1978RScI...49..797G. doi:10.1063/1.1135618. PMID   18699196.
  3. Schiewek M, Krumova M, Hempel G, Blume A (2007). "Pressure jump relaxation setup with IR detection and millisecond time resolution". Review of Scientific Instruments. 78: 045101. Bibcode:2007RScI...78d5101S. doi:10.1063/1.2719020. PMID   17477687.
  4. Heuer U, Krumova M, Hempel G, Schiewek M, Blume A (2010). "NMR probe for pressure-jump experiments up to 250 bars and 3 ms jump time". Review of Scientific Instruments. 81: 105102. Bibcode:2010RScI...81j5102H. doi:10.1063/1.3481164. PMID   21034114.
  5. Pörschke D (1982). Methods for studying fast kinetics in biological systems in: Davies DB, Saenger W, Danyluk SS (Eds) Structural Molecular Biology. Plenum Publishing Corp. ISBN   0-306-40982-8.
  6. Marchal S, Font J, Ribó M, Vilanova M, Phillips RS, Lange R, Torrent J (2009). "Asymmetric kinetics of protein structural changes". Accounts of Chemical Research. 42: 778–87. doi:10.1021/ar800266r. PMID   19378977.
  7. Pearson DS, Holtermann G, Ellison P, Cremo C, Geeves MA (2002). "A novel pressure jump apparatus for the microvolume analysis of protein-ligand and protein-protein interactions: its application to nucleotide binding to skeletal-muscle and smooth-muscle myosin subfragment 1". Biochemical Journal. 366: 643–651. doi:10.1042/BJ20020462. PMC   1222786 . PMID   12010120.
  8. Dumont C, Emilsson T, Gruebele M (2009). "Reaching the protein folding speed limit with large, sub-microsecond pressure jumps". Nature Methods. 6 (7): 515–9. doi:10.1038/nmeth.1336. PMID   19483692.
  9. Malnási-Csizmadia, A; Pearson, D.S.; Kovács, M.; Woolley, R.J.; Geeves, M.A.; Bagshaw, C.R. (2001). "Kinetic Resolution of a Conformational Transition and the ATP Hydrolysis Step Using Relaxation Methods with a Dictyostelium Myosin II Mutant Containing a Single Tryptophan Residue". Biochemistry. 40: 12727–12737. doi:10.1021/bi010963q. PMID   11601998.