Primitive permutation group

Last updated

In mathematics, a permutation group G acting on a non-empty finite set X is called primitive if G acts transitively on X and the only partitions the G-action preserves are the trivial partitions into either a single set or into |X| singleton sets. Otherwise, if G is transitive and G does preserve a nontrivial partition, G is called imprimitive.

Contents

While primitive permutation groups are transitive, not all transitive permutation groups are primitive. The simplest example is the Klein four-group acting on the vertices of a square, which preserves the partition into diagonals. On the other hand, if a permutation group preserves only trivial partitions, it is transitive, except in the case of the trivial group acting on a 2-element set. This is because for a non-transitive action, either the orbits of G form a nontrivial partition preserved by G, or the group action is trivial, in which case all nontrivial partitions of X (which exists for |X| ≥ 3) are preserved by G.

This terminology was introduced by Évariste Galois in his last letter, in which he used the French term équation primitive for an equation whose Galois group is primitive. [1]

Properties

In the same letter in which he introduced the term "primitive", Galois stated the following theorem: [2]

If G is a primitive solvable group acting on a finite set X, then the order of X is a power of a prime number p. Further, X may be identified with an affine space over the finite field with p elements, and G acts on X as a subgroup of the affine group.

If the set X on which G acts is finite, its cardinality is called the degree of G.

A corollary of this result of Galois is that, if p is an odd prime number, then the order of a solvable transitive group of degree p is a divisor of In fact, every transitive group of prime degree is primitive (since the number of elements of a partition fixed by G must be a divisor of p), and is the cardinality of the affine group of an affine space with p elements.

It follows that, if p is a prime number greater than 3, the symmetric group and the alternating group of degree p are not solvable, since their order are greater than Abel–Ruffini theorem results from this and the fact that there are polynomials with a symmetric Galois group.

An equivalent definition of primitivity relies on the fact that every transitive action of a group G is isomorphic to an action arising from the canonical action of G on the set G/H of cosets for H a subgroup of G. A group action is primitive if it is isomorphic to G/H for a maximal subgroup H of G, and imprimitive otherwise (that is, if there is a proper subgroup K of G of which H is a proper subgroup). These imprimitive actions are examples of induced representations.

The numbers of primitive groups of small degree were stated by Robert Carmichael in 1937:

Degree23456789101112131415161718192021222324 OEIS
Number12254771198694622104849475 A000019

There are a large number of primitive groups of degree 16. As Carmichael notes,[ pages needed ] all of these groups, except for the symmetric and alternating group, are subgroups of the affine group on the 4-dimensional space over the 2-element finite field.

Examples

Both and the group generated by are primitive.

The group generated by is not primitive, since the partition where and is preserved under , i.e. and .

See also

Related Research Articles

<span class="mw-page-title-main">Group action</span> Transformations induced by a mathematical group

In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group acts on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it. For example, it acts on the set of all triangles. Similarly, the group of symmetries of a polyhedron acts on the vertices, the edges, and the faces of the polyhedron.

<span class="mw-page-title-main">Permutation group</span> Group whose operation is composition of permutations

In mathematics, a permutation group is a group G whose elements are permutations of a given set M and whose group operation is the composition of permutations in G (which are thought of as bijective functions from the set M to itself). The group of all permutations of a set M is the symmetric group of M, often written as Sym(M). The term permutation group thus means a subgroup of the symmetric group. If M = {1, 2, ..., n} then Sym(M) is usually denoted by Sn, and may be called the symmetric group on n letters.

<span class="mw-page-title-main">Symmetric group</span> Type of group in abstract algebra

In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group defined over a finite set of symbols consists of the permutations that can be performed on the symbols. Since there are such permutation operations, the order of the symmetric group is .

<span class="mw-page-title-main">Group theory</span> Branch of mathematics that studies the properties of groups

In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right.

<span class="mw-page-title-main">Permutation</span> Mathematical version of an order change

In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or process of changing the linear order of an ordered set.

<span class="mw-page-title-main">Wreath product</span> Group formed from the action of one group on many copies of another, based on the semidirect product

In group theory, the wreath product is a special combination of two groups based on the semidirect product. It is formed by the action of one group on many copies of another group, somewhat analogous to exponentiation. Wreath products are used in the classification of permutation groups and also provide a way of constructing interesting examples of groups.

<span class="mw-page-title-main">Cayley graph</span> Graph defined from a mathematical group

In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group, is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem, and uses a specified set of generators for the group. It is a central tool in combinatorial and geometric group theory. The structure and symmetry of Cayley graphs makes them particularly good candidates for constructing families of expander graphs.

<span class="mw-page-title-main">Projective linear group</span> Construction in group theory

In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space V on the associated projective space P(V). Explicitly, the projective linear group is the quotient group

In mathematics, the projective special linear group PSL(2, 7), isomorphic to GL(3, 2), is a finite simple group that has important applications in algebra, geometry, and number theory. It is the automorphism group of the Klein quartic as well as the symmetry group of the Fano plane. With 168 elements, PSL(2, 7) is the smallest nonabelian simple group after the alternating group A5 with 60 elements, isomorphic to PSL(2, 5).

In mathematics, and in particular in group theory, a cyclic permutation is a permutation consisting of a single cycle. In some cases, cyclic permutations are referred to as cycles; if a cyclic permutation has k elements, it may be called a k-cycle. Some authors widen this definition to include permutations with fixed points in addition to at most one non-trivial cycle. In cycle notation, cyclic permutations are denoted by the list of their elements enclosed with parentheses, in the order to which they are permuted.

The concept of system of imprimitivity is used in mathematics, particularly in algebra and analysis, both within the context of the theory of group representations. It was used by George Mackey as the basis for his theory of induced unitary representations of locally compact groups.

<span class="mw-page-title-main">Frobenius group</span>

In mathematics, a Frobenius group is a transitive permutation group on a finite set, such that no non-trivial element fixes more than one point and some non-trivial element fixes a point. They are named after F. G. Frobenius.

<span class="mw-page-title-main">Symmetry in mathematics</span>

Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations.

In mathematics, Molien's formula computes the generating function attached to a linear representation of a group G on a finite-dimensional vector space, that counts the homogeneous polynomials of a given total degree that are invariants for G. It is named for Theodor Molien.

In group theory, a branch of mathematics, the automorphisms and outer automorphisms of the symmetric groups and alternating groups are both standard examples of these automorphisms, and objects of study in their own right, particularly the exceptional outer automorphism of S6, the symmetric group on 6 elements.

Mathieu group M<sub>12</sub>

In the area of modern algebra known as group theory, the Mathieu groupM12 is a sporadic simple group of order

In mathematical finite group theory, a rank 3 permutation group acts transitively on a set such that the stabilizer of a point has 3 orbits. The study of these groups was started by Higman. Several of the sporadic simple groups were discovered as rank 3 permutation groups.

In mathematics, the O'Nan–Scott theorem is one of the most influential theorems of permutation group theory; the classification of finite simple groups is what makes it so useful. Originally the theorem was about maximal subgroups of the symmetric group. It appeared as an appendix to a paper by Leonard Scott written for The Santa Cruz Conference on Finite Groups in 1979, with a footnote that Michael O'Nan had independently proved the same result. Michael Aschbacher and Scott later gave a corrected version of the statement of the theorem.

In mathematics, the automorphism group of an object X is the group consisting of automorphisms of X under composition of morphisms. For example, if X is a finite-dimensional vector space, then the automorphism group of X is the group of invertible linear transformations from X to itself. If instead X is a group, then its automorphism group is the group consisting of all group automorphisms of X.

<span class="mw-page-title-main">Affine symmetric group</span> Mathematical structure

The affine symmetric groups are a family of mathematical structures that describe the symmetries of the number line and the regular triangular tiling of the plane, as well as related higher-dimensional objects. In addition to this geometric description, the affine symmetric groups may be defined in other ways: as collections of permutations (rearrangements) of the integers that are periodic in a certain sense, or in purely algebraic terms as a group with certain generators and relations. They are studied as part of the fields of combinatorics and representation theory.

References

  1. Galois' last letter: http://www.galois.ihp.fr/ressources/vie-et-oeuvre-de-galois/lettres/lettre-testament
  2. Galois used a different terminology, because most of the terminology in this statement was introduced afterwards, partly for clarifying the concepts introduced by Galois.