This article may lack focus or may be about more than one topic.(May 2019) |
This article needs to be updated.(January 2024) |
Part of a series of articles on |
Molecular nanotechnology |
---|
In 2007, productive nanosystems were defined as functional nanoscale systems that make atomically-specified structures and devices under programmatic control, i.e., performing atomically precise manufacturing. [1] As of 2015, such devices were only hypothetical, and productive nanosystems represented a more advanced approach among several to perform Atomically Precise Manufacturing. A workshop on Integrated Nanosystems for Atomically Precise Manufacturing was held by the Department of Energy in 2015. [2]
Present-day technologies are limited in various ways. Large atomically precise structures (that is, virtually defect-free) do not exist. Complex 3D nanoscale structures exist in the form of folded linear molecules such as DNA origami and proteins. As of 2018, it was also possible to build very small atomically precise structures using scanning probe microscopy to construct molecules such as FeCO [3] and Triangulene, or to perform hydrogen depassivation lithography. [4] But it is not yet possible to combine components in a systematic way to build larger, more complex systems.
Principles of physics and examples from nature both suggest that it will be possible to extend atomically precise fabrication to more complex products of larger size, involving a wider range of materials. An example of progress in this direction would be Christian Schafmeister's work on bis-peptides. [5]
In 2005, Mihail Roco, one of the architects of the USA's National Nanotechnology Initiative, proposed four states of nanotechnology that seem to parallel the technical progress of the Industrial Revolution, of which productive nanosystems is the most advanced. [6]
1. Passive nanostructures - nanoparticles and nanotubes that provide added strength, electrical and thermal conductivity, toughness, hydrophilic/phobic and/or other properties that emerge from their nanoscale structure.
2. Active nanodevices - nanostructures that change states in order to transform energy, information, and/or to perform useful functions. There is some debate about whether or not state-of-the art integrated circuits qualify here, since they operate despite emergent nanoscale properties, not because of them. Therefore, the argument goes, they don't qualify as "novel" nanoscale properties, even though the devices themselves are between one and a hundred nanometers.
3. Complex nanomachines - the assembly of different nanodevices into a nanosystem to accomplish a complex function. Some would argue that Zettl's machines fit in this category; others argue that modern microprocessors and FPGAs also fit.
4. Systems of nanosystems/Productive nanosystems - these will be complex nanosystems that produce atomically precise parts for other nanosystems, not necessarily using novel nanoscale-emergent properties, but well-understood fundamentals of manufacturing. Because of the discrete (i.e. atomic) nature of matter and the possibility of exponential growth, this stage is seen as the basis of another industrial revolution. There are currently many different approaches to building productive nanosystems: including top-down approaches like Patterned atomic layer epitaxy [7] and Diamondoid Mechanosynthesis. [8] There are also bottom-up approaches like DNA Origami and Bis-peptide Synthesis. [9]
A fifth step, info/bio/nano convergence, was added later by Roco. This is the convergence of the three most revolutionary technologies, since every living thing is made up of atoms and information.
Molecular nanotechnology (MNT) is a technology based on the ability to build structures to complex, atomic specifications by means of mechanosynthesis. This is distinct from nanoscale materials. Based on Richard Feynman's vision of miniature factories using nanomachines to build complex products, this advanced form of nanotechnology would make use of positionally-controlled mechanosynthesis guided by molecular machine systems. MNT would involve combining physical principles demonstrated by biophysics, chemistry, other nanotechnologies, and the molecular machinery of life with the systems engineering principles found in modern macroscale factories.
Nanotechnology is the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm). At this scale, commonly known as the nanoscale, surface area and quantum mechanical effects become important in describing properties of matter. This definition of nanotechnology includes all types of research and technologies that deal with these special properties. It is common to see the plural form "nanotechnologies" as well as "nanoscale technologies" to refer to research and applications whose common trait is scale. An earlier understanding of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabricating macroscale products, now referred to as molecular nanotechnology.
A molecular assembler, as defined by K. Eric Drexler, is a "proposed device able to guide chemical reactions by positioning reactive molecules with atomic precision". A molecular assembler is a kind of molecular machine. Some biological molecules such as ribosomes fit this definition. This is because they receive instructions from messenger RNA and then assemble specific sequences of amino acids to construct protein molecules. However, the term "molecular assembler" usually refers to theoretical human-made devices.
Nanoelectromechanical systems (NEMS) are a class of devices integrating electrical and mechanical functionality on the nanoscale. NEMS form the next logical miniaturization step from so-called microelectromechanical systems, or MEMS devices. NEMS typically integrate transistor-like nanoelectronics with mechanical actuators, pumps, or motors, and may thereby form physical, biological, and chemical sensors. The name derives from typical device dimensions in the nanometer range, leading to low mass, high mechanical resonance frequencies, potentially large quantum mechanical effects such as zero point motion, and a high surface-to-volume ratio useful for surface-based sensing mechanisms. Applications include accelerometers and sensors to detect chemical substances in the air.
Nanoid robotics, or for short, nanorobotics or nanobotics, is an emerging technology field creating machines or robots, which are called nanorobots or simply nanobots, whose components are at or near the scale of a nanometer. More specifically, nanorobotics refers to the nanotechnology engineering discipline of designing and building nanorobots with devices ranging in size from 0.1 to 10 micrometres and constructed of nanoscale or molecular components. The terms nanobot, nanoid, nanite, nanomachine and nanomite have also been used to describe such devices currently under research and development.
A nanoruler is a tool or a method used within the subfield of "nanometrology" to achieve precise control and measurements at the nanoscale. Measurements of extremely tiny proportions require more complicated procedures, such as manipulating the properties of light (plasmonic) or DNA to determine distances. At the nanoscale, materials and devices exhibit unique properties that can significantly influence their behavior. In fields like electronics, medicine, and biotechnology, where advancements come from manipulating matter at the atomic and molecular levels, nanoscale measurements become essential.
DNA origami is the nanoscale folding of DNA to create arbitrary two- and three-dimensional shapes at the nanoscale. The specificity of the interactions between complementary base pairs make DNA a useful construction material, through design of its base sequences. DNA is a well-understood material that is suitable for creating scaffolds that hold other molecules in place or to create structures all on its own.
Nanoionics is the study and application of phenomena, properties, effects, methods and mechanisms of processes connected with fast ion transport (FIT) in all-solid-state nanoscale systems. The topics of interest include fundamental properties of oxide ceramics at nanometer length scales, and fast ion conductor /electronic conductor heterostructures. Potential applications are in electrochemical devices for conversion and storage of energy, charge and information. The term and conception of nanoionics were first introduced by A.L. Despotuli and V.I. Nikolaichik in January 1992.
Nanomanufacturing is both the production of nanoscaled materials, which can be powders or fluids, and the manufacturing of parts "bottom up" from nanoscaled materials or "top down" in smallest steps for high precision, used in several technologies such as laser ablation, etching and others. Nanomanufacturing differs from molecular manufacturing, which is the manufacture of complex, nanoscale structures by means of nonbiological mechanosynthesis.
Nanometrology is a subfield of metrology, concerned with the science of measurement at the nanoscale level. Nanometrology has a crucial role in order to produce nanomaterials and devices with a high degree of accuracy and reliability in nanomanufacturing.
The following outline is provided as an overview of and topical guide to nanotechnology:
Nanomechanics is a branch of nanoscience studying fundamental mechanical properties of physical systems at the nanometer scale. Nanomechanics has emerged on the crossroads of biophysics, classical mechanics, solid-state physics, statistical mechanics, materials science, and quantum chemistry. As an area of nanoscience, nanomechanics provides a scientific foundation of nanotechnology.
Local oxidation nanolithography (LON) is a tip-based nanofabrication method. It is based on the spatial confinement on an oxidation reaction under the sharp tip of an atomic force microscope.
Self-assembling peptides are a category of peptides which undergo spontaneous assembling into ordered nanostructures. Originally described in 1993, these designer peptides have attracted interest in the field of nanotechnology for their potential for application in areas such as biomedical nanotechnology, tissue cell culturing, molecular electronics, and more.
DNA nanotechnology is the design and manufacture of artificial nucleic acid structures for technological uses. In this field, nucleic acids are used as non-biological engineering materials for nanotechnology rather than as the carriers of genetic information in living cells. Researchers in the field have created static structures such as two- and three-dimensional crystal lattices, nanotubes, polyhedra, and arbitrary shapes, and functional devices such as molecular machines and DNA computers. The field is beginning to be used as a tool to solve basic science problems in structural biology and biophysics, including applications in X-ray crystallography and nuclear magnetic resonance spectroscopy of proteins to determine structures. Potential applications in molecular scale electronics and nanomedicine are also being investigated.
A nanoscale plasmonic motor is a type of nanomotor, converting light energy to rotational motion at nanoscale. It is constructed from pieces of gold sheet in a gammadion shape, embedded within layers of silica. When irradiated with light from a laser, the gold pieces rotate. The functioning is explained by the quantum concept of the plasmon. This type of nanomotor is much smaller than other types, and its operation can be controlled by varying the frequency of the incident light.
Alan T. Charlie Johnson is an American physicist, professor in physics and astronomy at the University of Pennsylvania. Johnson currently serves as the founding executive editor of the scientific journal AIP Advances and the co-founder of Graphene Frontiers, LLC.
MBN Explorer is a software package for molecular dynamics simulations, structure optimization and kinetic Monte Carlo simulations. It is designed for multiscale computational analysis of structure and dynamics of atomic clusters and nanoparticles, biomolecules and nanosystems, nanostructured materials, different states of matter and various interfaces. The software has been developed by MBN Research Center.
RNA origami is the nanoscale folding of RNA, enabling the RNA to create particular shapes to organize these molecules. It is a new method that was developed by researchers from Aarhus University and California Institute of Technology. RNA origami is synthesized by enzymes that fold RNA into particular shapes. The folding of the RNA occurs in living cells under natural conditions. RNA origami is represented as a DNA gene, which within cells can be transcribed into RNA by RNA polymerase. Many computer algorithms are present to help with RNA folding, but none can fully predict the folding of RNA of a singular sequence.
This glossary of nanotechnology is a list of definitions of terms and concepts relevant to nanotechnology, its sub-disciplines, and related fields.
{{cite web}}
: Missing or empty |title=
(help)