Protein music or, more broadly, genetic music (including DNA music) is a musical technique where music is composed by converting protein sequences or DNA sequences to musical notes. The earliest published references to genetic music in the scientific literature include a short correspondence by Hayashi and Munakata in Nature in 1984, [1] a publication by geneticist Susumu Ohno and Midori Ohno (his wife and a musician) in Immunogenetics, [2] and a paper in the journal Bioinformatics (then called Computer Applications in the Biosciences) co-authored by Ross D. King and Colin Angus (a member of the British psychedelic band The Shamen) in 1996, [3]
Shortly before the King and Angus publication the French physicist and composer Joël Sternheimer (a singer also known by his stage name, Évariste) applied for a patent to use protein music to affect protein synthesis. [4] The idea that music can affect protein synthesis is generally viewed as pseudoscientific by the molecular biology community, although the methods proposed by Sternheimer form the basis for software called Proteodyne. Applications for genetic music proposed in the scientific literature include aids to memorization and education.
The idea that genes and music exhibit similarities was noted even earlier than the scientific publications in the area by Douglas Hofstadter in Gödel, Escher, Bach . [5] Hofstadter even proposes that meaning is constructed in protein and in music. [6]
The ideas that supports the possibility of creating harmonic musics using this method are:
Musical renditions of DNA and proteins is not only a music composition method, but also a technique for studying genetic sequences. Music is a way of representing sequential relationships in a type of informational string to which the human ear is keenly attuned. The analytic and educational potential of using music to represent genetic patterns has been recognized from secondary school to university level. [13]
Susumu Ohno, one of the referents in the development of protein music, proposed in the early 80s that repetition is a fundamental to the evolution of proteins. [14] This idea was fundamental to his notion that the repetition in biological sequences would have parallels in music composition, leading Ohno to state that the "...all-pervasive principle of repetitious recurrence governs not only coding sequence construction but also human endeavor in musical composition." [15]
By implementing the concept of musical transformation in DNA sequences, and changing the fragments into musical scores, researchers are allowed to explore the repetitions in the sequences in terms of musical periodicities. The approach consists of assigning musical notes to nucleotide sequences, unveiling hidden patterns of relationship within genetic coding. Music and DNA share similarities in their structure by exhibiting repeating units and motifs. [16]
Periodicities and the principle of repetitious recurrences govern many aspects of life on this earth, including musical compositions and coding base sequences in genomes. [2] This inherent similarity resulted in the effort to interconvert the two. One of music’s uses, from its creation by the primitive Homo sapiens to the modern day, is as a time-keeping device. In Ohno’s rendition, a space and a line on the octave scale are assigned to each base, A, G, T, and C. His work compares and identifies parallels in genomic sequences and notable music from the early Baroque and Romantic periods. [15] Beyond the parallels that can be found rhythmically in music and peptide sequences, musical patterns can be a valuable tool for identifying sequence patterns of interest. For example, work done by Robert P. Bywater and Jonathan N. Middleton has used melody generation software to identify protein folds from sequence data. [17]
Given the importance of repetition in music it is logical to assume that deviations from purely random patterns are likely to be necessary to produce aesthetically pleasing sonic patterns. Indeed, the idea that repetition is key in the formation of functional proteins [16] was central to Ohno's early work in the area of genetic music. The question of randomness in protein sequences has received substantial attention, with early work suggesting that protein sequences are effectively random [18] (at least when viewed at the scale of proteomes). However, subsequent work suggests the existence of statistically important regularities in protein sequences [19] [20] and experimental work has shown that periodicities can play a role in the origin of ordered proteins. [21] Presumably, these periodicities are responsible for the aesthetically pleasing nature of music based on at least some proteins.
Ohno suggested that one important deviation from randomness is palindromic amino acid sequences ("peptide palindromes" [22] ) in DNA-binding proteins, such as the H1 histone. [23] Another example of these periodic sequences are the dipeptidic repeats found in the per locus coding sequences in Drosophila melanogaster have been found in the mouse as well. [15] Ohno argues that the coding sequences behave periodically not merely as unique products of pure randomness and understanding this is a key feature to unraveling the complexity behind the genetic information challenging the notion of randomness in biological processes and comparing it more proximate with music. [16] Although peptide palindromes are important deviations from randomness, they are distinct from palindromic sequences in nucleic acids, which are sequences that read identically to the sequence in the same direction on complementary strands. Peptide palindromes, as defined by Ohno, are actually much more similar to palindromes in other contexts. For example, the mouse H1 histone palindrome highlighted by Ohno is KAVKPKAAKPKVAK (letters correspond to the standard one-letter amino acid codes); note that this sequence simply reads identically when written forwards or backwards and is unrelated to nucleic acid complementarity. Large-scale surveys of peptide palindromes indicate that they are present in many proteins but they are not necessarily associated with any specific protein structures. [24] The relationship between peptide palindromes and protein music has not been studied at a large scale.
Genetics is the study of genes, genetic variation, and heredity in organisms. It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinian friar working in the 19th century in Brno, was the first to study genetics scientifically. Mendel studied "trait inheritance", patterns in the way traits are handed down from parents to offspring over time. He observed that organisms inherit traits by way of discrete "units of inheritance". This term, still used today, is a somewhat ambiguous definition of what is referred to as a gene.
Nucleic acids are large biomolecules that are crucial in all cells and viruses. They are composed of nucleotides, which are the monomer components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main classes of nucleic acids are deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). If the sugar is ribose, the polymer is RNA; if the sugar is deoxyribose, a variant of ribose, the polymer is DNA.
The central dogma of molecular biology deals with the flow of genetic information within a biological system. It is often stated as "DNA makes RNA, and RNA makes protein", although this is not its original meaning. It was first stated by Francis Crick in 1957, then published in 1958:
The Central Dogma. This states that once "information" has passed into protein it cannot get out again. In more detail, the transfer of information from nucleic acid to nucleic acid, or from nucleic acid to protein may be possible, but transfer from protein to protein, or from protein to nucleic acid is impossible. Information here means the precise determination of sequence, either of bases in the nucleic acid or of amino acid residues in the protein.
Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, proteins or non-coding RNA, and ultimately affect a phenotype. These products are often proteins, but in non-protein-coding genes such as transfer RNA (tRNA) and small nuclear RNA (snRNA), the product is a functional non-coding RNA. The process of gene expression is used by all known life—eukaryotes, prokaryotes, and utilized by viruses—to generate the macromolecular machinery for life.
Molecular evolution describes how inherited DNA and/or RNA change over evolutionary time, and the consequences of this for proteins and other components of cells and organisms. Molecular evolution is the basis of phylogenetic approaches to describing the tree of life. Molecular evolution overlaps with population genetics, especially on shorter timescales. Topics in molecular evolution include the origins of new genes, the genetic nature of complex traits, the genetic basis of adaptation and speciation, the evolution of development, and patterns and processes underlying genomic changes during evolution.
In biology, translation is the process in living cells in which proteins are produced using RNA molecules as templates. The generated protein is a sequence of amino acids. This sequence is determined by the sequence of nucleotides in the RNA. The nucleotides are considered three at a time. Each such triple results in addition of one specific amino acid to the protein being generated. The matching from nucleotide triple to amino acid is called the genetic code. The translation is performed by a large complex of functional RNA and proteins called ribosomes. The entire process is called gene expression.
Molecular genetics is a branch of biology that addresses how differences in the structures or expression of DNA molecules manifests as variation among organisms. Molecular genetics often applies an "investigative approach" to determine the structure and/or function of genes in an organism's genome using genetic screens.
Repeated sequences are short or long patterns that occur in multiple copies throughout the genome. In many organisms, a significant fraction of the genomic DNA is repetitive, with over two-thirds of the sequence consisting of repetitive elements in humans. Some of these repeated sequences are necessary for maintaining important genome structures such as telomeres or centromeres.
In computational biology, gene prediction or gene finding refers to the process of identifying the regions of genomic DNA that encode genes. This includes protein-coding genes as well as RNA genes, but may also include prediction of other functional elements such as regulatory regions. Gene finding is one of the first and most important steps in understanding the genome of a species once it has been sequenced.
A point mutation is a genetic mutation where a single nucleotide base is changed, inserted or deleted from a DNA or RNA sequence of an organism's genome. Point mutations have a variety of effects on the downstream protein product—consequences that are moderately predictable based upon the specifics of the mutation. These consequences can range from no effect to deleterious effects, with regard to protein production, composition, and function.
Protein sequencing is the practical process of determining the amino acid sequence of all or part of a protein or peptide. This may serve to identify the protein or characterize its post-translational modifications. Typically, partial sequencing of a protein provides sufficient information to identify it with reference to databases of protein sequences derived from the conceptual translation of genes.
Genetics, a discipline of biology, is the science of heredity and variation in living organisms.
A palindromic sequence is a nucleic acid sequence in a double-stranded DNA or RNA molecule whereby reading in a certain direction on one strand is identical to the sequence in the same direction on the complementary strand. This definition of palindrome thus depends on complementary strands being palindromic of each other.
Chloroplast DNA (cpDNA), also known as plastid DNA (ptDNA) is the DNA located in chloroplasts, which are photosynthetic organelles located within the cells of some eukaryotic organisms. Chloroplasts, like other types of plastid, contain a genome separate from that in the cell nucleus. The existence of chloroplast DNA was identified biochemically in 1959, and confirmed by electron microscopy in 1962. The discoveries that the chloroplast contains ribosomes and performs protein synthesis revealed that the chloroplast is genetically semi-autonomous. The first complete chloroplast genome sequences were published in 1986, Nicotiana tabacum (tobacco) by Sugiura and colleagues and Marchantia polymorpha (liverwort) by Ozeki et al. Since then, tens of thousands of chloroplast genomes from various species have been sequenced.
The RNA Tie Club was an informal scientific club, meant partly to be humorous, of select scientists who were interested in how proteins were synthesised from genes, specifically the genetic code. It was created by George Gamow upon a suggestion by James Watson in 1954 when the relationship between nucleic acids and amino acids in genetic information was unknown. The club consisted of 20 full members, each representing an amino acid, and four honorary members, representing the four nucleotides. The function of the club members was to think up possible solutions and share with the other members.
Numerous key discoveries in biology have emerged from studies of RNA, including seminal work in the fields of biochemistry, genetics, microbiology, molecular biology, molecular evolution, and structural biology. As of 2010, 30 scientists have been awarded Nobel Prizes for experimental work that includes studies of RNA. Specific discoveries of high biological significance are discussed in this article.
Genome editing, or genome engineering, or gene editing, is a type of genetic engineering in which DNA is inserted, deleted, modified or replaced in the genome of a living organism. Unlike early genetic engineering techniques that randomly inserts genetic material into a host genome, genome editing targets the insertions to site-specific locations. The basic mechanism involved in genetic manipulations through programmable nucleases is the recognition of target genomic loci and binding of effector DNA-binding domain (DBD), double-strand breaks (DSBs) in target DNA by the restriction endonucleases, and the repair of DSBs through homology-directed recombination (HDR) or non-homologous end joining (NHEJ).
GADV-protein world is a hypothetical stage of abiogenesis. GADV stands for the one letter codes of four amino acids, namely, glycine (G), alanine (A), aspartic acid (D) and valine (V), the main components of GADV proteins. In the GADV-protein world hypothesis, it is argued that the prebiotic chemistry before the emergence of genes involved a stage where GADV-proteins were able to pseudo-replicate. This hypothesis is contrary to the RNA world hypothesis.
Low complexity regions (LCRs) in protein sequences, also defined in some contexts as compositionally biased regions (CBRs), are regions in protein sequences that differ from the composition and complexity of most proteins that is normally associated with globular structure. LCRs have different properties from normal regions regarding structure, function and evolution.
This glossary of cellular and molecular biology is a list of definitions of terms and concepts commonly used in the study of cell biology, molecular biology, and related disciplines, including molecular genetics, biochemistry, and microbiology. It is split across two articles:
Imagine the mRNA to be like a long piece of magnetic recording tape, and the ribosome to be like a tape recorder. As the tape passes through the playing head of the recorder, it is "read" and converted into music, or other sounds...When a 'tape' of mRNA passes through the 'playing head' of a ribosome, the 'notes' produced are amino acids and the pieces of music they make up are proteins.
Journal articles, Arranged by post date:
{{cite book}}
: |journal=
ignored (help)