Pseudo-arc

Last updated

In general topology, the pseudo-arc is the simplest nondegenerate hereditarily indecomposable continuum. The pseudo-arc is an arc-like homogeneous continuum, and played a central role in the classification of homogeneous planar continua. R. H. Bing proved that, in a certain well-defined sense, most continua in Rn, n ≥ 2, are homeomorphic to the pseudo-arc.

Contents

History

In 1920, Bronisław Knaster and Kazimierz Kuratowski asked whether a nondegenerate homogeneous continuum in the Euclidean plane R2 must be a Jordan curve. In 1921, Stefan Mazurkiewicz asked whether a nondegenerate continuum in R2 that is homeomorphic to each of its nondegenerate subcontinua must be an arc. In 1922, Knaster discovered the first example of a hereditarily indecomposable continuum K, later named the pseudo-arc, giving a negative answer to a Mazurkiewicz question. In 1948, R. H. Bing proved that Knaster's continuum is homogeneous, i.e. for any two of its points there is a homeomorphism taking one to the other. Yet also in 1948, Edwin Moise showed that Knaster's continuum is homeomorphic to each of its non-degenerate subcontinua. Due to its resemblance to the fundamental property of the arc, namely, being homeomorphic to all its nondegenerate subcontinua, Moise called his example M a pseudo-arc. [lower-alpha 1] Bing's construction is a modification of Moise's construction of M, which he had first heard described in a lecture. In 1951, Bing proved that all hereditarily indecomposable arc-like continua are homeomorphic — this implies that Knaster's K, Moise's M, and Bing's B are all homeomorphic. Bing also proved that the pseudo-arc is typical among the continua in a Euclidean space of dimension at least 2 or an infinite-dimensional separable Hilbert space. [lower-alpha 2] Bing and F. Burton Jones constructed a decomposable planar continuum that admits an open map onto the circle, with each point preimage homeomorphic to the pseudo-arc, called the circle of pseudo-arcs. Bing and Jones also showed that it is homogeneous. In 2016 Logan Hoehn and Lex Oversteegen classified all planar homogeneous continua, up to a homeomorphism, as the circle, pseudo-arc and circle of pseudo-arcs. In 2019 Hoehn and Oversteegen showed that the pseudo-arc is topologically the only, other than the arc, hereditarily equivalent planar continuum, thus providing a complete solution to the planar case of Mazurkiewicz's problem from 1921.

Construction

The following construction of the pseudo-arc follows ( Wayne Lewis 1999 ).

Chains

At the heart of the definition of the pseudo-arc is the concept of a chain, which is defined as follows:

A chain is a finite collection of open sets in a metric space such that if and only if The elements of a chain are called its links, and a chain is called an ε-chain if each of its links has diameter less than ε.

While being the simplest of the type of spaces listed above, the pseudo-arc is actually very complex. The concept of a chain being crooked (defined below) is what endows the pseudo-arc with its complexity. Informally, it requires a chain to follow a certain recursive zig-zag pattern in another chain. To 'move' from the mth link of the larger chain to the nth, the smaller chain must first move in a crooked manner from the mth link to the (n  1)th link, then in a crooked manner to the (m + 1)th link, and then finally to the nth link.

More formally:

Let and be chains such that
  1. each link of is a subset of a link of , and
  2. for any indices i, j, m, and n with , , and , there exist indices and with (or ) and and
Then is crooked in

Pseudo-arc

For any collection C of sets, let denote the union of all of the elements of C. That is, let

The pseudo-arc is defined as follows:

Let p and q be distinct points in the plane and be a sequence of chains in the plane such that for each i,
  1. the first link of contains p and the last link contains q,
  2. the chain is a -chain,
  3. the closure of each link of is a subset of some link of , and
  4. the chain is crooked in .
Let
Then P is a pseudo-arc.

Notes

  1. Henderson (1960) later showed that a decomposable continuum homeomorphic to all its nondegenerate subcontinua must be an arc.
  2. The history of the discovery of the pseudo-arc is described in Nadler (1992), pp. 228–229.

Related Research Articles

In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and introduced by German mathematician Georg Cantor in 1883.

In mathematics, a geometric algebra is an extension of elementary algebra to work with geometrical objects such as vectors. Geometric algebra is built out of two fundamental operations, addition and the geometric product. Multiplication of vectors results in higher-dimensional objects called multivectors. Compared to other formalisms for manipulating geometric objects, geometric algebra is noteworthy for supporting vector division and addition of objects of different dimensions.

In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas). It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections. When the defining polynomial is not absolutely irreducible, the zero set is generally not considered a quadric, although it is often called a degenerate quadric or a reducible quadric.

In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by .

<span class="mw-page-title-main">Simplicial complex</span> Mathematical set composed of points, line segments, triangles, and their n-dimensional counterparts

In mathematics, a simplicial complex is a set composed of points, line segments, triangles, and their n-dimensional counterparts. Simplicial complexes should not be confused with the more abstract notion of a simplicial set appearing in modern simplicial homotopy theory. The purely combinatorial counterpart to a simplicial complex is an abstract simplicial complex. To distinguish a simplicial complex from an abstract simplicial complex, the former is often called a geometric simplicial complex.

<span class="mw-page-title-main">Algebraic curve</span> Curve defined as zeros of polynomials

In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.

In mathematical analysis, a space-filling curve is a curve whose range reaches every point in a higher dimensional region, typically the unit square. Because Giuseppe Peano (1858–1932) was the first to discover one, space-filling curves in the 2-dimensional plane are sometimes called Peano curves, but that phrase also refers to the Peano curve, the specific example of a space-filling curve found by Peano.

R. H. Bing was an American mathematician who worked mainly in the areas of geometric topology and continuum theory. His father was named Rupert Henry, but Bing's mother thought that "Rupert Henry" was too British for Texas. She compromised by abbreviating it to R. H. Consequently, R. H. does not stand for a first or middle name.

<span class="mw-page-title-main">Bronisław Knaster</span> Polish mathematician

Bronisław Knaster was a Polish mathematician; from 1939 a university professor in Lwów and from 1945 in Wrocław.

In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms. That is, a property of spaces is a topological property if whenever a space X possesses that property every space homeomorphic to X possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets.

<span class="mw-page-title-main">Triangulation (topology)</span>

In mathematics, triangulation describes the replacement of topological spaces by piecewise linear spaces, i.e. the choice of a homeomorphism in a suitable simplicial complex. Spaces being homeomorphic to a simplicial complex are called triangulable. Triangulation has various uses in different branches of mathematics, for instance in algebraic topology, in complex analysis or in modeling.

<span class="mw-page-title-main">Indecomposable continuum</span>

In point-set topology, an indecomposable continuum is a continuum that is indecomposable, i.e. that cannot be expressed as the union of any two of its proper subcontinua. In 1910, L. E. J. Brouwer was the first to describe an indecomposable continuum.

<span class="mw-page-title-main">Dendroid (topology)</span> Topological space

In mathematics, a dendroid is a type of topological space, satisfying the properties that it is hereditarily unicoherent, arcwise connected, and forms a continuum. The term dendroid was introduced by Bronisław Knaster lecturing at the University of Wrocław, although these spaces were studied earlier by Karol Borsuk and others.

<span class="mw-page-title-main">Edwin E. Moise</span> American mathematician

Edwin Evariste Moise was an American mathematician and mathematics education reformer. After his retirement from mathematics he became a literary critic of 19th-century English poetry and had several notes published in that field.

In the mathematical field of point-set topology, a continuum is a nonempty compact connected metric space, or, less frequently, a compact connected Hausdorff space. Continuum theory is the branch of topology devoted to the study of continua.

In mathematics, the Thurston boundary of Teichmüller space of a surface is obtained as the boundary of its closure in the projective space of functionals on simple closed curves on the surface. The Thurston boundary can be interpreted as the space of projective measured foliations on the surface.

In mathematics, the classical Möbius plane is the Euclidean plane supplemented by a single point at infinity. It is also called the inversive plane because it is closed under inversion with respect to any generalized circle, and thus a natural setting for planar inversive geometry.

In geometry, a unital is a set of n3 + 1 points arranged into subsets of size n + 1 so that every pair of distinct points of the set are contained in exactly one subset. This is equivalent to saying that a unital is a 2-(n3 + 1, n + 1, 1) block design. Some unitals may be embedded in a projective plane of order n2 (the subsets of the design become sets of collinear points in the projective plane). In this case of embedded unitals, every line of the plane intersects the unital in either 1 or n + 1 points. In the Desarguesian planes, PG(2,q2), the classical examples of unitals are given by nondegenerate Hermitian curves. There are also many non-classical examples. The first and the only known unital with non prime power parameters, n=6, was constructed by Bhaskar Bagchi and Sunanda Bagchi. It is still unknown if this unital can be embedded in a projective plane of order 36, if such a plane exists.

In mathematics, an -algebra in a symmetric monoidal infinity category C consists of the following data:

Topological geometry deals with incidence structures consisting of a point set and a family of subsets of called lines or circles etc. such that both and carry a topology and all geometric operations like joining points by a line or intersecting lines are continuous. As in the case of topological groups, many deeper results require the point space to be (locally) compact and connected. This generalizes the observation that the line joining two distinct points in the Euclidean plane depends continuously on the pair of points and the intersection point of two lines is a continuous function of these lines.

References