Pseudopregnancy

Last updated

In mammalian species, pseudopregnancy is a physical state whereby all the signs and symptoms of pregnancy are exhibited, [1] with the exception of the presence of a fetus, creating a false pregnancy. The corpus luteum (the remains of an ovulated ovarian follicle) is responsible for the development of maternal behavior and lactation, which are mediated by the continued production of progesterone by the corpus luteum through some or all of pregnancy. In most species, the corpus luteum is degraded in the absence of a pregnancy. However, in some species, the corpus luteum may persist in the absence of pregnancy and cause "pseudopregnancy", in which the female will exhibit clinical signs of pregnancy. [2]

Contents

The mechanism is not well understood, but prolactin and its receptors are known to be involved in pseudopregnancy. [3] The role of prolactin in maintaining pseudopregnancy is evident. For instance in the rodent, if chronic prolactin is administered the pseudopregnancy will continue, whereas the condition only lasts a few days if not administered. [4]

Cats

Pseudopregnancy occurs when a female cat ovulates but is not fertilised due to breeding with an infertile male, spontaneous ovulation or due to the owner stimulating ovulation. The corpus luteum is present after ovulation and persists for around 37 days. The length of pseudopregnancy varies greatly with the mean duration being 41 days. After pseudopregnancy, the female cat returns to proestrus and can become pregnant again. The pseudopregnancy lasts around half the length of a normal pregnancy in cats. This is advantageous to cats as they can conceive earlier making them more efficient in reproduction. [5]

Cat Cat November 2010-1a.jpg
Cat

Cats become pseudopregnant following an estrus in which the queen is bred by an infertile male. Queens are induced ovulators, meaning that they will only ovulate and produce a corpus luteum if they are bred. The corpus luteum persists as if the queen were pregnant because the queen's body cannot distinguish between the pregnant and non-pregnant state (aside from the initial mechanical trigger of coitus). Pseudopregnant queens rarely show any mammary enlargement or behavioral signs and therefore rarely require treatment. Pseudopregnancy in cats is uncommon as the queen must be bred by an infertile male to become pseudopregnant, compounded by the fact that cats are seasonal breeders. [6]

The progesterone and estradiol profiles in pseudopregnancy are very different when compared to normal pregnancy. During pseudopregnancy, estradiol increases straight after mating and then decreases to normal levels. The amount of progesterone does not increase until 23 days post copulation, then the level rises until day 21 post copulation where after it gradually declines to normal levels. [5]

Dogs

Pseudopregnancy is a normal physiologic process that occurs in female dogs. It is seen 4560 days after a normal estrous (heat) period. After ovulation, progesterone levels rise. Pseudopregnancy happens when the progesterone levels begin to fall as decreasing progesterone leads to an increase of the hormone prolactin. Prolactin is responsible for the behaviours seen during pseudopregnancy. Dogs may exhibit mothering of toys, nesting or aggression. Mammary development and milk production are common. Pseudopregnancy can also be acutely induced by spaying (removing of ovaries) a dog near the end of estrus. Spaying removes the source of progesterone and induces a rise in prolactin.

Permanent prevention of pseudopregnancy is accomplished with spaying. [7]

Dog Canis lupus familiaris.002 - Monfero.jpg
Dog

Dogs become pseudopregnant following an estrus phase in which the female dog is not bred, or in which she is bred by an infertile male. Most species require signals from an embryo (such as IFN-τ in ruminants) to alert the female's body of a pregnancy. This maternal recognition of pregnancy will cause persistence of the corpus luteum and the development of characteristics and behaviors necessary to care for offspring. Recent research suggests that progesterone secretion is similar in pregnant and non-pregnant female dogs, [8] so veterinary researchers hypothesize that they may not require molecular factors from the embryo for maternal recognition of pregnancy, and instead the corpus luteum persists regardless of pregnancy. Since the corpus luteum is not degraded, it will cause the development of maternal characteristics in the absence of pregnancy. Pseudopregnant dogs will develop their mammary glands, lactate, and build nests to varying degrees depending on breed. Although female dogs usually only cycle once or twice per year, pseudopregnancy is common. [9]

Swine

Pseudopregnancy or "not-in-pig" is a condition that occurs when females exhibit physiological and behavioral signs associated with pregnancy, but there are no fetuses present. Pseudopregnancy can occur when all of the embryos are resorbed after the maternal recognition of pregnancy (days 1015 postmating) and before fetal bone calcification (days 3540 of gestation). The sow remains in anoestrus for prolonged periods, often as long as 115 days. These animals may exhibit varying degrees of udder development, but fail to deliver any pigs. The timely identification and removal of non-pregnant females from the breeding herd is important because it reduces both non-productive sow days and production costs. [10]

Swine Domestic pigs (Sus scrofa domesticus) (8620573441).jpg
Swine

Techniques used for pregnancy diagnosis in swine include ultrasonography, amplitude depth machines, and Doppler machines. [11]

Mycotoxins have been shown to be detrimental to sows and gilts by causing the female to retain a corpora lutea inhibiting cyclicity and causing a pseudopregnancy; as well as a constant exhibition of estrus, and infertility. Pregnant females produce litters that result in a higher number of stillborns, mummified fetuses, and abortions. Before breeding, ingesting mycotoxins mimics the action of estradiol-17β. Specifically, zearalenone binds to estrogenic receptors that would normally bind to estrogen, causing the female to exhibit constant estrus. [12]

Rats

The initiation of pseudopregnancy is basically similar to the pregnancy regarding the activation of progestational state. The neuroendocrine pathway of pseudopregnancy in rats is mainly initiated by the nocturnal surge of prolactin. [13] The hormone prolactin produced regulates the activation and early maintenance of corpus luteum. The corpus luteum is known as a site of progesterone production in order for the uterus undergoes a decidual process. There are two types of induced pseudopregnancy; coitally induced pseudopregnancy and non-coitally induced pseudopregnancy. [14]

Rat London Scruffy Rat.jpg
Rat

The coitally induced pseudopregnancy is stimulated by the action of copulation. The copulation stimulation causes the nocturnal prolactin elevation which then activates the corpus luteum. The multiple intromission coital pattern initiates the neuroendocrine reflex which results in the sufficient progesterone secretion in pseudopregnancy. However, induction of pseudopregnancy requires adrenergic system to be activated and simultaneously inhibits the cholinergic system. [14]

The non-coitally induced pseudopregnancy requires the presence of the initial stimulus until the levels of progesterone are sufficiently elevated to produce positive feedback on secretion of prolactin. The initial stimulus can be in a form of some socio-environmental factors, such as concaveation with foster pups in virgin rats or cohabitation in all-female groups in mice. [14]

Mice

Mouse Mysh' 2.jpg
Mouse

Mice become pseudopregnant following an estrus in which the female is bred by an infertile male, resulting in sterile mating. [15] Like dogs, mice are spontaneous ovulators. However, they will not become pseudopregnant following an estrus in which the female does not mate because the corpus luteum will degrade rapidly in the absence of coitus. When the female is mated by an infertile male, the corpus luteum persists without an embryo, leading to pseudopregnancy. The female will develop mammary glands, lactate, and build nests in the pseudopregnant state. Pseudopregnancy in mice is somewhat common in laboratory mice because it is often induced for the purpose of implanting embryos into a surrogate dam, but is uncommon in wild mice because most wild males are fertile and will genuinely impregnate the female. [2]

Related Research Articles

<span class="mw-page-title-main">Horse breeding</span> Human-directed process of selective horse breeding

Horse breeding is reproduction in horses, and particularly the human-directed process of selective breeding of animals, particularly purebred horses of a given breed. Planned matings can be used to produce specifically desired characteristics in domesticated horses. Furthermore, modern breeding management and technologies can increase the rate of conception, a healthy pregnancy, and successful foaling.

<span class="mw-page-title-main">Progesterone</span> Sex hormone

Progesterone (P4) is an endogenous steroid and progestogen sex hormone involved in the menstrual cycle, pregnancy, and embryogenesis of humans and other species. It belongs to a group of steroid hormones called the progestogens and is the major progestogen in the body. Progesterone has a variety of important functions in the body. It is also a crucial metabolic intermediate in the production of other endogenous steroids, including the sex hormones and the corticosteroids, and plays an important role in brain function as a neurosteroid.

<span class="mw-page-title-main">Menstrual cycle</span> Natural changes in the human female reproductive system

The menstrual cycle is a series of natural changes in hormone production and the structures of the uterus and ovaries of the female reproductive system that makes pregnancy possible. The ovarian cycle controls the production and release of eggs and the cyclic release of estrogen and progesterone. The uterine cycle governs the preparation and maintenance of the lining of the uterus (womb) to receive an embryo. These cycles are concurrent and coordinated, normally last between 21 and 35 days, with a median length of 28 days, and continue for about 30–45 years.

<span class="mw-page-title-main">Prolactin</span> Protein family and hormone

Prolactin (PRL), also known as lactotropin and mammotropin, is a protein best known for its role in enabling mammals to produce milk. It is influential in over 300 separate processes in various vertebrates, including humans. Prolactin is secreted from the pituitary gland in response to eating, mating, estrogen treatment, ovulation and nursing. It is secreted heavily in pulses in between these events. Prolactin plays an essential role in metabolism, regulation of the immune system and pancreatic development.

<span class="mw-page-title-main">Pyometra</span> Medical condition

Pyometra or pyometritis is a uterine infection. Though it is most commonly known as a disease of the unaltered female dog, it is also a notable human disease. It is also seen in female cattle, horses, goats, sheep, swine, cats, rabbits, hamsters, ferrets, rats and guinea pigs. Pyometra is an important disease to be aware of for any dog or cat owner because of the sudden nature of the disease and the deadly consequences if left untreated. It has been compared to acute appendicitis in humans, because both are essentially empyemas within an abdominal organ.

<span class="mw-page-title-main">Embryonic diapause</span> Evolutionary reproductive strategy of mammals

Embryonic diapause (delayed implantation in mammals) is a reproductive strategy used by a number of animal species across different biological classes. In more than 130 types of mammals where this takes place, the process occurs at the blastocyst stage of embryonic development, and is characterized by a dramatic reduction or complete cessation of mitotic activity, arresting most often in the G0 or G1 phase of division.

An anovulatory cycle is a menstrual cycle characterised by the absence of ovulation and a luteal phase. It may also vary in duration from a regular menstrual cycle.

The estrous cycle is a set of recurring physiological changes induced by reproductive hormones in females of mammalian subclass Theria. Estrous cycles start after sexual maturity in females and are interrupted by anestrous phases, otherwise known as "rest" phases, or by pregnancies. Typically, estrous cycles repeat until death. These cycles are widely variable in duration and frequency depending on the species. Some animals may display bloody vaginal discharge, often mistaken for menstruation. Many mammals used in commercial agriculture, such as cattle and sheep, may have their estrous cycles artificially controlled with hormonal medications for optimum productivity. The male equivalent, seen primarily in ruminants, is called rut.

Basal body temperature is the lowest body temperature attained during rest. It is usually estimated by a temperature measurement immediately after awakening and before any physical activity has been undertaken. This will lead to a somewhat higher value than the true BBT.

<span class="mw-page-title-main">Luteal phase</span> The latter part of the menstrual cycle associated with ovulation and an increase in progesterone

The menstrual cycle is on average 28 days in length. It begins with menses during the follicular phase and followed by ovulation and ending with the luteal phase. Unlike the follicular phase which can vary in length among individuals, the luteal phase is typically fixed at approximately 14 days and is characterized by changes to hormone levels, such as an increase in progesterone and estrogen levels, decrease in gonadotropins such as follicle-stimulating hormone (FSH) and luteinizing hormone (LH), changes to the endometrial lining to promote implantation of the fertilized egg, and development of the corpus luteum. In the absence of fertilization by sperm, the corpus luteum atrophies leading to a decrease in progesterone and estrogen, an increase in FSH and LH, and shedding of the endometrial lining (menses) to begin the menstrual cycle again.

Canine reproduction is the process of sexual reproduction in domestic dogs, wolves, coyotes and other canine species.

<span class="mw-page-title-main">Prostaglandin F2alpha</span> Chemical compound

Prostaglandin F, pharmaceutically termed carboprost is a naturally occurring prostaglandin used in medicine to induce labor and as an abortifacient. Prostaglandins are lipids throughout the entire body that have a hormone-like function. In pregnancy, PGF2 is medically used to sustain contracture and provoke myometrial ischemia to accelerate labor and prevent significant blood loss in labor. Additionally, PGF2 has been linked to being naturally involved in the process of labor. It has been seen that there are higher levels of PGF2 in maternal fluid during labor when compared to at term. This signifies that there is likely a biological use and significance to the production and secretion of PGF2 in labor. Prostaglandin is also used to treat uterine infections in domestic animals.

<span class="mw-page-title-main">Nesting instinct</span> Instinct in pregnant animals related to estradiol

Nesting behavior refers to an instinct in animals during reproduction to prepare a place with optimal conditions for offspring. The nesting place provides protection against predators and competitors that mean to exploit or kill offspring. It also provides protection against the physical environment.

The Bruce effect, or pregnancy block, is the tendency for female rodents to terminate their pregnancies following exposure to the scent of an unfamiliar male. The effect was first noted in 1959 by Hilda M. Bruce, and has primarily been studied in laboratory mice. In mice, pregnancy can only be terminated prior to embryo implantation, but other species will interrupt even a late-term pregnancy.

Hormonal regulation occurs at every stage of development. A milieu of hormones simultaneously affects development of the fetus during embryogenesis and the mother, including human chorionic gonadotropin (hCG) and progesterone (P4).

Menstruation is the shedding of the uterine lining (endometrium). It occurs on a regular basis in uninseminated sexually reproductive-age females of certain mammal species.

<span class="mw-page-title-main">Estrous synchronization</span> Method of artificial breeding

In agriculture, estrous synchronization is used to facilitate breeding by artificial insemination.

<span class="mw-page-title-main">Induced ovulation (animals)</span>

Induced ovulation is when a female animal ovulates due to an externally-derived stimulus during, or just prior to, mating, rather than ovulating cyclically or spontaneously. Stimuli causing induced ovulation include the physical act of coitus or mechanical stimulation simulating this, sperm and pheromones.

<span class="mw-page-title-main">Cloprostenol</span> Chemical compound

Cloprostenol is a synthetic analogue of prostaglandin F (PGF). It is a potent luteolytic agent; this means that, within hours of administration, it causes the corpus luteum to stop production of progesterone, and to reduce in size over several days. This effect is used in animals to induce estrus and to cause abortion.

<span class="mw-page-title-main">Maternal recognition of pregnancy</span> Crucial aspect of carrying a pregnancy to full term

Maternal recognition of pregnancy is a crucial aspect of carrying a pregnancy to full term. Without maternal recognition to maintain pregnancy, the initial messengers which stop luteolysis and promote foetal implantation, growth and uterine development finish with nothing to replace them and the pregnancy is lost.

References

  1. Yadav T, Balhara YP, Kataria DK (January 2012). "Pseudocyesis Versus Delusion of Pregnancy: Differential Diagnoses to be Kept in Mind". Indian Journal of Psychological Medicine. 34 (1): 82–84. doi: 10.4103/0253-7176.96167 . PMC   3361851 . PMID   22661815.
  2. 1 2 Cunningham JG, Klein BG (2007). Textbook of Veterinary Physiology (Fourth ed.). St. Louis: Elsevier Inc.
  3. Foster RA (January 2017). "Female reproductive system and mammae.". In Zachary JF (ed.). Pathologic basis of veterinary disease (6th ed.). Mosby. pp. 1147–1193. doi:10.1016/B978-0-323-35775-3.00018-7. ISBN   978-0-323-35775-3.
  4. Demirel MA, Suntar I, Ceribaşı S, Zengin G, Ceribaşı AO (2018-08-01). "Evaluation of the therapeutic effects of Artemisia absinthium L. on pseudopregnancy model in rats". Phytochemistry Reviews. 17 (4): 937–946. Bibcode:2018PChRv..17..937D. doi:10.1007/s11101-018-9571-3. ISSN   1572-980X. S2CID   254948383.
  5. 1 2 Petersen A (2015). "Reproductive physiology of the female cat". Epsilon Archive for Student Projects.
  6. Tsutsui T, Stabenfeldt GH (1993). "Biology of ovarian cycles, pregnancy and pseudopregnancy in the domestic cat". Journal of Reproduction and Fertility. Supplement. 47 (47): 29–35. PMID   8229938.
  7. Larsen J. "Canine pseudopregnancy" (PDF). UC Davis School of Veterinary Medicine. Archived from the original (PDF) on 5 June 2015. Retrieved 2017-10-13.
  8. Hinderer J, Lüdeke J, Riege L, Haimerl P, Bartel A, Kohn B, et al. (November 2021). "Progesterone Concentrations during Canine Pregnancy". Animals. 11 (12): 3369. doi: 10.3390/ani11123369 . PMC   8697939 . PMID   34944146.
  9. Gobello C, Concannon PW, Verstegen J (August 2001). "Canine pseudopregnancy: a review." (PDF). In Concannon PW, England G, Verstegen J (eds.). Recent advances in Small animal reproduction. Ithaca, New York: International Veterinary Information Service. Archived from the original (PDF) on April 19, 2011.
  10. Flowers WL (2001). "Real-time ultrasonography and diagnosis of pseudopregnancy in swine". NC State University. Retrieved 2017-10-13.
  11. Flowers WL, Knox RV. "Pregnancy diagnosis in swine" (PDF). Pork Information Gateway. Archived from the original (PDF) on 2017-11-17. Retrieved 2017-10-13.
  12. Diekman MA, Green ML (May 1992). "Mycotoxins and reproduction in domestic livestock". Journal of Animal Science. 70 (5): 1615–1627. doi: 10.2527/1992.7051615x . PMID   1388147.
  13. Terkel J (1988). "Neuroendocrine processes in the establishment of pregnancy and pseudopregnancy in rats". Psychoneuroendocrinology. 13 (1–2): 5–28. doi:10.1016/0306-4530(88)90004-2. PMID   3287417. S2CID   12881334.
  14. 1 2 3 Terkel J (1986). "Neuroendocrinology of coitally and noncoitally induced pseudopregnancy". Annals of the New York Academy of Sciences. 474 (1): 76–94. Bibcode:1986NYASA.474...76T. doi:10.1111/j.1749-6632.1986.tb28000.x. PMID   3555247. S2CID   41857353.
  15. Pritchett KR, Taft RA (2007). "Reproductive biology of the laboratory mouse: Pseudopregnancy". In Fox JG, Barthold S, Davisson M, Newcomer CE, Quimby FW, Smith A (eds.). The Mouse in Biomedical Research: history, wild mice, and genetics. Vol. III (2nd ed.). Boston: Academic Press. p. 103. doi:10.1016/B978-012369454-6/50057-1. ISBN   978-0-12-369457-7.

Further reading