Neutering

Last updated

Neutering, from the Latin neuter ('of neither sex'), [1] is the removal of a non-human animal's reproductive organ, either all of it or a considerably large part. The male-specific term is castration, while spaying is usually reserved for female animals. Colloquially, both terms are often referred to as fixing. [2] In male horses, castrating is referred to as gelding . An animal that has not been neutered is sometimes referred to as entire or intact.

Contents

Neutering is the most common method for animal sterilization. Humane societies, animal shelters, and rescue groups urge pet owners to have their pets neutered to prevent the births of unwanted litters, which contribute to the overpopulation of unwanted animals in the rescue system. Many countries require that all adopted cats and dogs be sterilized before going to their new homes.

Methods of sterilization

Females (spaying)

Feline uterus Spay 1.JPG
Feline uterus
Closed spaying incision on a female dog, taken 24 hours after surgery Female dog spay incision.jpg
Closed spaying incision on a female dog, taken 24 hours after surgery

Spaying is the surgical removal of the ovaries and uterus in female animals. It is commonly performed as a method of birth control and behavior modification. [3]

In non-human animals, the technical term is an ovo-hysterectomy or ovariohysterectomy; while in humans, this is called a hystero-oophorectomy. One form of spaying is to remove only the ovaries (oophorectomy or ovariectomy), which is mainly done in cats and young dogs. Another, less commonly performed method is an "ovary-sparing spay" [4] in which the uterus is removed but one (or both) ovaries are left. A complete ovariohysterectomy may involve removal of the ovaries, uterus, oviducts, and uterine horns.

Surgical incision site of a female cat Cat spay scar.jpg
Surgical incision site of a female cat

The surgery can be performed using a traditional open approach or by laparoscopic "keyhole" surgery. Open surgery is more widely available, as laparoscopic surgical equipment costs are expensive. Traditional open surgery is usually performed through a ventral midline incision below the umbilicus. The incision size varies depending upon the surgeon and the size of the animal. The uterine horns are identified and the ovaries are found by following the horns to their ends.

There is a ligament that attaches the ovaries to the body wall, which may need to be broken down so the ovaries can be identified. The ovarian arteries are then ligated with resorbable suture material and then the arteries transected. The uterine body (which is very short in litter-bearing species) and related arteries are also tied off just in front of the cervix (leaving the cervix as a natural barrier). The entire uterus and ovaries are then removed. The abdomen is checked for bleeding and then closed with a three-layer closure. The linea alba and then the subcutaneous layer are closed with resorbable suture material. The skin is then stapled, sutured, or glued closed. For suturing the feline linea alba, the most appropriate suture bite and stitch interval size was suggested to be 5 mm. [5]

Laparoscopic surgery is performed using a camera and instruments placed through small incisions (ports) in the body wall. The patient is under anaesthesia and lying on the back. The incisions are between 5 and 10 millimetres (0.20 and 0.39 in) and the number varies according to the equipment and technique used. The surgeon watches on a screen during the operation. The first port is made just behind the umbilicus and the camera is inserted. The abdomen is inflated with carbon dioxide gas to create a space in which to operate. A second port is introduced a few centimeters in front of the navel and a long grasping instrument called a Babcock forceps is inserted. The surgeon finds the ovary with the instrument and uses it to suspend the ovary from a needle placed through the abdominal wall. This lifts the ovary and uterus safely away from other organs. The surgeon then removes the grasping instrument and replaces it with an instrument that cauterizes and cuts tissue. This instrument uses electricity to heat the blood vessels to seal them and to cut them. No sutures are placed inside. The ovary is separated from the uterus and round ligament. The cautery instrument is removed and replaced by the grasping instrument, which is used to pull the ovary out through the small abdominal incision (port). This is repeated on the other side and the small holes are closed with a few sutures. Another method uses ligatures and even the uterus is removed. In female dogs only removing the ovaries and not the uterus is not state of the art because this way the risk of pyometra persists.

The benefits of laparoscopic surgery are less pain, faster recovery, and smaller wounds to heal. A study has shown that patients are 70% more active in the first three days post-surgery compared to open surgery. The reason open surgery is more painful is that larger incisions are required, and the ovary needs to be pulled out of the body, which stretches and tears tissue in the abdomen (it is not uncommon for patients to react under anaesthesia by breathing faster at this point).

Spaying in female dogs removes the production of progesterone, which is a natural calming hormone and a serotonin uplifter. Spaying may therefore escalate any observable aggressive behaviour, either to humans or other dogs. [6] [7] [8] [9]

The risk of infections, bleeding, ruptures, inflammation and reactions to the drugs given to the animal as part of the procedure are all possibilities that should be considered.

Males (castration)

Closed castration incision on a male dog, taken 12 hours after surgery Neutering incision on a dog.jpg
Closed castration incision on a male dog, taken 12 hours after surgery

In male animals, castration involves the removal of the testes (testicles), and is commonly practiced on both household pets (for birth control and behaviour modification) and on livestock (for birth control, as well as to improve commercial value). Often the term neuter[ing] is used to specifically mean castration, e.g. in phrases like "spay and neuter".

Surgical alternatives (vasectomy, tubal ligation, "gomerization")

Vasectomy: In a more delicate procedure than castration, the vasa deferentia – ducts that run from the testes to the penis – are cut then tied or sealed, to prevent sperm from entering into the urethra. Failure rates are insignificantly small. Breeders routinely have this procedure carried out on male ferrets and sheep to manipulate the estrus cycles of in-contact females. It is uncommon in other animal species. Because a vasectomy is usually a more expensive procedure, among pet-keepers it is more often performed on show animals, to cosmetically preserve their appearance (though depending upon the fancier organization, the procedure may invalidate the animal's candidacy for certain awards, or relegate it to a non-pedigree, generic "household pet" competition division, just as with full castration).

Tubal ligation: Snipping and tying of fallopian tubes as a sterilization measure can be performed on female cats, dogs, and other species; it is essentially the female equivalent of vasectomy, but a more invasive procedure. Risk of unwanted pregnancies is insignificantly small. Only a few veterinarians perform the procedure.

Like other forms of neutering, vasectomy and tubal ligation eliminate the ability to produce offspring. They differ from neutering in that they leave the animal's levels and patterns of sex hormone unchanged. Both sexes will retain their normal reproductive behavior, and other than birth control, none of the advantages and disadvantages listed above apply. This method is favored by some people who seek minimal infringement on the natural state of companion animals to achieve the desired reduction of unwanted births of cats and dogs.

"Gomerization" is breeders' informal term for surgical techniques by which male livestock, such as bulls, retain their full libido (and related effects like sex pheromones that would be lost through castration), but are rendered incapable of copulation. This is done to stimulate and identify estrous females without the risk of transmitting venereal diseases or causing a pregnancy by a male other than the one intended for selective breeding. Animals altered for this purpose are referred to as teasers (teaser bulls, etc.), or gomers. Several methods are used. Penile translocation surgically alters the penis to point far enough away from its normal direction that it cannot manage vaginal penetration. Penile fixation permanently attaches the penis to the abdomen so that it cannot be lowered for penetration. Penectomy is the partial or complete removal of the penis. [10]

Nonsurgical alternatives

Injectable

  • Male dogs – Two intratesticular injectable formulations are known to sterilize male dogs. Zeuterin was approved by the United States Food and Drug Administration (FDA) for permanent sterilization of male dogs ages three months and older by causing necrosis of the testicle. [11] It is not currently available commercially. Calcium chloride dissolved in a variety of diluents have also been studied, with the majority of research and most promising results using calcium chloride dissolved in ethyl alcohol. Calcium chloride formulations can be purchased for use in animals from compounding pharmacies, but the use of calcium chloride for sterilization of males is not approved by the FDA or any other international regulatory agency. [12]
  • Male cats – Calcium chloride formulations have also been studied in male cats. [13]
  • Male rats – Adjudin (analogue of indazole-carboxylic acid), induces reversible germ cell loss from the seminiferous epithelium by disrupting cell adhesion function between nurse cells and immature sperm cells, preventing maturation.
  • Male mice – injection of a solution of the JQ1 molecule to bind to a pocket of BRDT necessary for chromatin remodeling, which gives the proteins that regulate how genes act access to the genetic material [14]
  • Male sheep and pigs – Wireless Microvalve. [15] A proposed non-chemical, reversible sterilization method using a piezoelectric polymer that will deform when exposed to a specific electric field broadcast from an emitter. The valve will then open or close, preventing the passage of sperm, but not seminal fluid. Located in a section of the vas deferens that occurs just after the epididymis, the implantation can be carried out by use of a hypodermic needle.
  • Female mammals – Vaccine of antigens (derived from purified porcine zona pellucida) encapsulated in liposomes (cholesterol and lecithin) with an adjuvant, latest US patent RE37,224 (as of 2006-06-06), CA patent 2137263 (issued 1999-06-15). Product commercially known as SpayVac, [16] a single injection causes a treated female mammal to produce antibodies that bind to ZP3 on the surface of her ovum, blocking sperm from fertilizing it for periods from 22 months up to 7 years (depending on the animal [17] [18] ). This will not prevent the animal from going into heat (ovulating) and other than birth control, none of the above-mentioned advantages or disadvantages apply.

Other

  • Male mice – reversible regulation of the KATNAL1 gene in the Sertoli cell microtubule dynamics of the testes. [19]
  • Female mammals – orally administered phosphodiesterase 3 inhibitor ORG 9935 daily before and during ovulation, which blocks the resumption of meiosis resulting in ovulation of a non-fertilizable, immature oocyte without rupturing the follicle. [20]

Early-age neutering

Early-age neutering, also known as pediatric spaying or prepubertal gonadectomy, is the removal of the ovaries or testes before the onset of puberty. It is used mainly in animal sheltering and rescue where puppies and kittens can be neutered before being adopted out, eliminating non-compliance with sterilization agreement, which is typically above 40%. [21] The American Veterinary Medical Association, American Animal Hospital Association and the Canadian Veterinary Medical Association support the procedure for population control, provided that the veterinarian uses their best knowledge when making the decision about the age at neutering. [22] [23] [24] A task force recommends that cats are spayed–neutered prior to 5 months of age. [25] [26]

While the age-unrelated risks and benefits cited above also apply to early-age neutering, various studies have indicated that the procedure is safe and not associated with increased mortality or serious health and behavioral problems when compared to conventional age neutering. [27] [28] [29] [30] [31] Anesthesia recovery in young animals is usually more rapid and there are fewer complications. [31] [32] One study found that in female dogs there is an increasing risk of urinary incontinence the earlier the procedure is carried out; the study recommended that female dogs be spayed no earlier than 3 to 4 months of age. [28] A later study comparing female dogs spayed between 4 and 6 months and after 6 months showed no increased risk. [33]

One study showed the incidence of hip dysplasia increased to 6.7% for dogs neutered before 5.5 months compared to 4.7% for dogs neutered after 5.5 months, although the cases associated with early age neutering seems to be of a less severe form. There was no association between age of neutering and arthritis or long-bone fractures. [28] Another study showed no correlation between age of neutering and musculoskeletal problems. [30] A study of large breed dogs with cranial cruciate ligament rupture associated early-age neutering with the development of an excessive tibial plateau angle. [34]

Of particular note are two recent studies from Lynette Hart's lab at UC Davis. The first study from 2013, published in a well-known interdisciplinary peer-reviewed journal demonstrated "no cases of CCL (cruciate ligament tear) diagnosed in intact males or females, but in early-neutered males and females the occurrences were 5 percent and 8 percent, respectively. Almost 10 percent of early-neutered males were diagnosed with LSA (lymphosarcoma), 3 times more than intact males. The percentage of HSA (hemangiosarcoma) cases in late-neutered females (about 8 percent) was 4 times more than intact and early-neutered females. There were no cases of MCT (mast cell tumor) in intact females, but the occurrence was nearly 6 percent in late-neutered females". [35]

The second study from 2014 [36] highlighted significant difference in closely related breeds (retrievers), suggesting that inter-breed variability is quite high and that sweeping legal measures and surgical mandates are not the best solutions to canine welfare and health. Specifically the study states: "In Labrador Retrievers, where about 5 percent of gonadally intact males and females had one or more joint disorders, neutering at 6 months doubled the incidence of one or more joint disorders in both sexes. In male and female Golden Retrievers, with the same 5 percent rate of joint disorders in intact dogs, neutering at 6 months increased the incidence of a joint disorder to 4–5 times that of intact dogs. The incidence of one or more cancers in female Labrador Retrievers increased slightly above the 3 percent level of intact females with neutering. In contrast, in female Golden Retrievers, with the same 3 percent rate of one or more cancers in intact females, neutering at all periods through 8 years of age increased the rate of at least one of the cancers by 3–4 times. In male Golden and Labrador Retrievers neutering had relatively minor effects in increasing the occurrence of cancers."

In terms of behavior in dogs, separation anxiety, aggression, escape behavior and inappropriate elimination are reduced while noise phobia and sexual behavior was increased. In males with aggression issues, earlier neutering may increase barking. [28] In cats, asthma, gingivitis, and hyperactivity were decreased, while shyness was increased. In male cats, occurrence of abscesses, aggression toward veterinarians, sexual behaviors, and urine spraying was decreased, while hiding was increased. [27]

Health and behavioral effects

Advantages

Besides being a birth control method, and being convenient to many owners, castrating/spaying has the following health benefits:

Disadvantages

Current research

Various studies of the effects neutering has overall on male and female dog aggression have been unable to arrive at a consensus. A possible reason for this according to two studies is changes to other factors have more of an effect than neutering. [64] [65] One study reported results of aggression towards familiar and strange people and other dogs reduced between 10 and 60 percent of cases, [66] while other studies reported increases in possessive aggression [67] and aggression towards familiar and strange people, [68] and more studies reported there was no significant difference in aggression risk between neutered and non-neutered males. [65] [69] For females with existing aggression, many studies reported increases in aggressive behavior [6] [7] [8] [9] and some found increased separation anxiety behavior. [68] [70] A report from the American Kennel Club Canine Health Foundation reported significantly more behavioral problems in castrated dogs. The most commonly observed behavioral problem in spayed females was fearful behavior and the most common problem in males was aggression. [71] Early age gonadectomy is associated with an increased incidence of noise phobias and undesirable sexual behaviors[ clarify ]. [72]

Terminology for neutered animals

A specialized vocabulary is used in animal husbandry and animal fancy for neutered (castrated) animals:

barrow
Pig castrated before maturity. [73]
bullock
Male castrated draft animal. [74]
capon
Male castrated chicken. [73]
gelding
Male castrated horse, [75] or donkey.
gib
Male castrated cat, [76] or ferret. [73]
havier
Male castrated deer. [77]
lapin
Male castrated rabbit. [73]
ox
Male castrated draft animal. [74]
spay
Female neutered cat. [76]
poulard
Female spayed chicken. [73]
sprite
Female neutered ferret. [73]
steer
Male cattle castrated before maturity. [73]
stag
Male cattle or pig castrated after maturity. [73]
wether
Male castrated goat or sheep. [73]

Religious views

Islam

There are differing views in Islam with regard to neutering animals, with some Islamic associations stating that when done to maintain the health and welfare of both the animals and the community, neutering is allowed on the basis of being in the interest of 'maslaha' (general good) [78] or "choosing the lesser of two evils". [79]

Judaism

Orthodox Judaism forbids the castration of both humans and non-human animals by Jews, [80] except in lifesaving situations. [81] In 2007, the Sephardic Chief Rabbi of Israel Rabbi Shlomo Amar issued a ruling stating that it is permissible to have companion animals neutered on the basis of the Jewish mandate to prevent cruelty to animals. [82]

See also

Related Research Articles

<span class="mw-page-title-main">Cat</span> Small domesticated carnivorous mammal

The cat, commonly referred to as the domestic cat or house cat, is the only domesticated species in the family Felidae. Recent advances in archaeology and genetics have shown that the domestication of the cat occurred in the Near East around 7500 BC. It is commonly kept as a house pet and farm cat, but also ranges freely as a feral cat avoiding human contact. It is valued by humans for companionship and its ability to kill vermin. Because of its retractable claws, it is adapted to killing small prey like mice and rats. It has a strong, flexible body, quick reflexes, sharp teeth, and its night vision and sense of smell are well developed. It is a social species, but a solitary hunter and a crepuscular predator. Cat communication includes vocalizations like meowing, purring, trilling, hissing, growling, and grunting as well as cat body language. It can hear sounds too faint or too high in frequency for human ears, such as those made by small mammals. It also secretes and perceives pheromones.

<span class="mw-page-title-main">Cryptorchidism</span> Medical condition

Cryptorchidism, also known as undescended testis, is the failure of one or both testes to descend into the scrotum. The word is from Greek κρυπτός 'hidden' and ὄρχις 'testicle'. It is the most common birth defect of the male genital tract. About 3% of full-term and 30% of premature infant boys are born with at least one undescended testis. However, about 80% of cryptorchid testes descend by the first year of life, making the true incidence of cryptorchidism around 1% overall. Cryptorchidism may develop after infancy, sometimes as late as young adulthood, but that is exceptional.

<span class="mw-page-title-main">Hemangiosarcoma</span> Medical condition

Hemangiosarcoma is a rapidly growing, highly invasive variety of cancer that occurs almost exclusively in dogs, and only rarely in cats, horses, mice, or humans. It is a sarcoma arising from the lining of blood vessels; that is, blood-filled channels and spaces are commonly observed microscopically. A frequent cause of death is the rupturing of this tumor, causing the patient to rapidly bleed to death.

Trap–neuter–return (TNR), also known as trap–neuter–release, is a controversial method that attempts to manage populations of feral cats. The process involves live-trapping the cats, having them neutered, ear-tipped for identification, and, if possible, vaccinated, then releasing them back into the outdoors. If the location is deemed unsafe or otherwise inappropriate, the cats may be relocated to other appropriate areas. Ideally, friendly adults and kittens young enough to be easily socialized are retained and placed for adoption. Feral cats cannot be socialized, shun most human interaction and do not fare well in confinement, so they are not retained. Cats suffering from severe medical problems such as terminal, contagious, or untreatable illnesses or injuries are often euthanized.

<span class="mw-page-title-main">Pyometra</span> Medical condition

Pyometra or pyometritis is a uterine infection. Though it is most commonly known as a disease of the unaltered female dog, it is also a notable human disease. It is also seen in female cattle, horses, goats, sheep, swine, cats, rabbits, hamsters, ferrets, rats and guinea pigs. Pyometra is an important disease to be aware of for any dog or cat owner because of the sudden nature of the disease and the deadly consequences if left untreated. It has been compared to acute appendicitis in humans, because both are essentially empyemas within an abdominal organ.

<span class="mw-page-title-main">Feral cat</span> Unowned or untamed domestic cat in the outdoors

A feral cat or a stray cat is an unowned domestic cat that lives outdoors and avoids human contact; it does not allow itself to be handled or touched, and usually remains hidden from humans. Feral cats may breed over dozens of generations and become an aggressive local apex predator in urban, savannah and bushland environments. Some feral cats may become more comfortable with people who regularly feed them, but even with long-term attempts at socialization, they usually remain aloof and are most active after dusk. Of the 700 million cats in the world, an estimated 480 million are feral.

<span class="mw-page-title-main">Dog aggression</span> Behavior in dogs

Dog aggression expressed by dogs is considered to be normal behaviour and various types of aggression are influenced by a dog's environment and genetic predisposition. Dogs commonly display possessive aggression when defending resources or themselves.

In mammalian species, pseudopregnancy is a physical state whereby all the signs and symptoms of pregnancy are exhibited, with the exception of the presence of a fetus, creating a false pregnancy. The corpus luteum is responsible for the development of maternal behavior and lactation, which are mediated by the continued production of progesterone by the corpus luteum through some or all of pregnancy. In most species, the corpus luteum is degraded in the absence of a pregnancy. However, in some species, the corpus luteum may persist in the absence of pregnancy and cause "pseudopregnancy", in which the female will exhibit clinical signs of pregnancy.

<span class="mw-page-title-main">Dobermann</span> Black and tan dog breed from Germany

The Dobermann is a German breed of medium-large domestic dog of pinscher type. It was originally bred in Thuringia in about 1890 by Louis Dobermann, a tax collector. It has a long muzzle and – ideally – an even and graceful gait. The ears were traditionally cropped and the tail docked, practices which are now illegal in many countries.

<span class="mw-page-title-main">Dog health</span> Health of dogs

The health of dogs is a well studied area in veterinary medicine.

<span class="mw-page-title-main">Mammary tumor</span>

A mammary tumor is a neoplasm originating in the mammary gland. It is a common finding in older female dogs and cats that are not spayed, but they are found in other animals as well. The mammary glands in dogs and cats are associated with their nipples and extend from the underside of the chest to the groin on both sides of the midline. There are many differences between mammary tumors in animals and breast cancer in humans, including tumor type, malignancy, and treatment options. The prevalence in dogs is about three times that of women. In dogs, mammary tumors are the second most common tumor over all and the most common tumor in female dogs with a reported incidence of 3.4%. Multiple studies have documented that spaying female dogs when young greatly decreases their risk of developing mammary neoplasia when aged. Compared with female dogs left intact, those spayed before puberty have 0.5% of the risk, those spayed after one estrous cycle have 8.0% of the risk, and dogs spayed after two estrous cycles have 26.0% of the risk of developing mammary neoplasia later in life. Overall, unspayed female dogs have a seven times greater risk of developing mammary neoplasia than do those that are spayed. While the benefit of spaying decreases with each estrous cycle, some benefit has been demonstrated in female dogs even up to 9 years of age. There is a much lower risk in male dogs and a risk in cats about half that of dogs.

<span class="mw-page-title-main">Dog</span> Domesticated canid species

The dog is a domesticated descendant of the wolf. Also called the domestic dog, it is derived from extinct gray wolves, and the gray wolf is the dog's closest living relative. The dog was the first species to be domesticated by humans. Hunter-gatherers did this over 15,000 years ago in Oberkassel, Bonn, which was before the development of agriculture. Due to their long association with humans, dogs have expanded to a large number of domestic individuals and gained the ability to thrive on a starch-rich diet that would be inadequate for other canids.

<span class="mw-page-title-main">Veterinary surgery</span> Surgery performed on non-human animals

Veterinary surgery is surgery performed on non-human animals by veterinarians, whereby the procedures fall into three broad categories: orthopaedics, soft tissue surgery, and neurosurgery. Advanced surgical procedures such as joint replacement, fracture repair, stabilization of cranial cruciate ligament deficiency, oncologic (cancer) surgery, herniated disc treatment, complicated gastrointestinal or urogenital procedures, kidney transplant, skin grafts, complicated wound management, and minimally invasive procedures are performed by veterinary surgeons. Most general practice veterinarians perform routine surgeries such as neuters and minor mass excisions; some also perform additional procedures.

Canine reproduction is the process of sexual reproduction in domestic dogs, wolves, coyotes and other canine species.

A vaccine-associated sarcoma (VAS) or feline injection-site sarcoma (FISS) is a type of malignant tumor found in cats which has been linked to certain vaccines. VAS has become a concern for veterinarians and cat owners alike and has resulted in changes in recommended vaccine protocols. These sarcomas have been most commonly associated with rabies and feline leukemia virus vaccines, but other vaccines and injected medications have also been implicated.

<span class="mw-page-title-main">Aging in dogs</span>

Aging in dogs varies from breed to breed, and affects the dog's health and physical ability. As with humans, advanced years often bring changes in a dog's ability to hear, see, and move about easily. Skin condition, appetite, and energy levels often degrade with geriatric age. Medical conditions such as cancer, kidney failure, arthritis, dementia, and joint conditions, and other signs of old age may appear.

Pediatric spaying or neutering is defined as performing an ovariohysterectomy (spaying) or orchidectomy on a kitten or puppy between the ages of 6 and 14 weeks. Spaying and neutering are sterilization procedures which prevent the animals from reproducing. The procedures are also referred to as “gonadectomies” in the veterinary literature.

<span class="mw-page-title-main">Dog appeasing pheromone</span>

Dog appeasing pheromone (DAP), sometimes known as apasine, is a mixture of esters of fatty acids released by the sebaceous glands in the inter-mammary sulcus of lactating female dogs. It is secreted from between three and four days after parturition and two to five days after weaning. DAP is believed to be detected by the vomeronasal organ and has an appeasing effect on both adults and pups, and assists in establishing a bond with the mother.

A number of studies have studied adverse reactions in pets after administering vaccines to both dogs and cats. Vaccination guidelines regarding the recommended frequency and methods/locations take into consideration minimizing the risks of such events. The 2010 pet vaccination guidelines published by the WSAVA recommend the specific vaccines that pets should receive, and the cost-benefit analysis associated with the low risk of adverse effects leads researchers into adverse effects to still recommend vaccination.

Non-surgical fertility control is the prevention of reproduction without the use of surgery. The most common form of sterilization in dogs and cats is surgical, spaying in females and castration in males. Non-surgical fertility control can either result in sterilization or temporary contraception and could offer a cheaper way to keep wild dog and cat populations under control. As of 2019, only contraceptives are commercially available. Research is ongoing into methods that could result in permanent suppression of fertility.

References

  1. "Latin Word Lookup". www.archives.nd.edu.
  2. "Fix" Archived 21 January 2014 at the Wayback Machine at Merriam-Webster.com
  3. Hooper R. N.; Taylor T. S.; Varner D. D.; Blanchard T. L. (October 1993). "Effects of bilateral ovariectomy via colpotomy in mares: 23 cases (1984–1990)". Journal of the American Veterinary Medical Association. 203 (7): 1043–6. PMID   8226251.
  4. "Ovary-Sparing Spay – Parsemus Foundation". Archived from the original on 8 October 2015.
  5. Bartier, Amanda L.; Atilla, Aylin; Archer, Rebecca; Kwong, Grace P. S. (10 December 2019). "Optimal Suture Bite Size for Closure of Feline Linea Alba—A Cadaveric Study". Frontiers in Veterinary Science. 6: 441. doi: 10.3389/fvets.2019.00441 . PMC   6914685 . PMID   31921902.
  6. 1 2 Polsky R. H. (1996). "Recognizing dominance aggression in dogs". Veterinary Medicine. 91: 196–201.
  7. 1 2 Blackshaw, J.K. (1991). "An overview of types of aggressive behavior in dogs and methods of treatment". Applied Animal Behaviour Science. 30 (3–4): 351–361. doi:10.1016/0168-1591(91)90140-S.
  8. 1 2 Wright J. C. (1991). "Canine aggression toward people. Bite scenarios and prevention". Veterinary Clinics of North America: Small Animal Practice. 21 (2): 299–314. doi:10.1016/s0195-5616(91)50034-6. PMID   2053252.
  9. 1 2 Crowell-Davis S. L. (1991). "Identifying and correcting human-directed dominance aggression of dogs". Veterinary Medicine. 86: 990–998.
  10. "Penectomized Teaser Bull". The Drost Project. Archived from the original on 31 March 2012. Retrieved 24 August 2011.
  11. "Zeuterin". www.acc-d.org. 5 January 2019. Retrieved 5 January 2019.
  12. Leoci, Raffaella (14 October 2014). "Alcohol diluent provides the optimal formulation for calcium chloride non-surgical sterilization in dogs". Acta Veterinaria Scandinavica. 56 (1): 62. doi: 10.1186/s13028-014-0062-2 . PMC   4195956 . PMID   25317658.
  13. Jana, Kuladip (2011). "Clinical Evaluation of Non-surgical Sterilization of Male Cats with Single Intra-testicular Injection of Calcium Chloride". BMC Vet Res. 7: 39. doi: 10.1186/1746-6148-7-39 . PMC   3152893 . PMID   21774835.
  14. Matzuk, Martin M.; McKeown, Michael R.; Filippakopoulos, Panagis; Li, Qinglei; Ma, Lang; Agno, Julio E.; Lemieux, Madeleine E.; Picaud, Sarah; Yu, Richard N.; Qi, Jun; Knapp, Stefan; Bradner, James E. (17 August 2012). "Small-Molecule Inhibition of BRDT for Male Contraception". Cell. 150 (4): 673–684. doi:10.1016/j.cell.2012.06.045. PMC   3420011 . PMID   22901802.
  15. Jones, Inke; Ricciardi, Lucas; Hall, Leonard; Hansen, Hedley; Varadan, Vijay; Bertram, Chris; Maddocks, Simon; Enderling, Stefan; Saint, David; Al-Sarawi, Said; Abbott, Derek (17 January 2008). "Wireless RF communication in biomedical applications" (PDF). Smart Materials and Structures. 17 (1): 8–9. Bibcode:2008SMaS...17a5050J. doi:10.1088/0964-1726/17/1/015050. S2CID   31682313. Archived (PDF) from the original on 25 August 2011. Retrieved 25 June 2008.
  16. SpayVac. Retrieved on early 2003.
  17. Killian, Gary; Diehl, Nancy K.; Miller, Lowell; Rhyan, Jack; Thain, David (2007). "Long-term Efficacy of Three Contraceptive Approaches for Population Control of Wild Horses" (PDF). In Timm, R. M.; O'Brien, J. M. (eds.). Proceedings, Twenty-Second Vertebrate Pest Conference. 22nd Vertebrate Pest Conference. University of California, Davis. pp. 67–71. Archived (PDF) from the original on 13 February 2017.
  18. DeNicola, Anthony; Miller, Lowell A.; Gionfriddo, James P.; Fagerstone, Kathleen A. (16 March 2007). "Status of Present Day Infertility Technology". Northeast Association of Fish and Wildlife Agencies. Archived from the original on 29 August 2007. Retrieved 16 March 2007.
  19. Smith, Lee B.; Milne, L.; Nelson, N.; Eddie, S.; Brown, P.; Atanassova, N.; O’Bryan, M. K.; O’Donnell, L.; Rhodes, D.; Wells, S.; Napper, D.; Nolan, P.; Lalanne, Z.; Cheeseman, M.; Peters, J. (May 2012). "KATNAL1 Regulation of Sertoli Cell Microtubule Dynamics is Essential for Spermiogenesis and Male Fertility". PLOS Genetics. 8 (5): e1002697. doi: 10.1371/journal.pgen.1002697 . PMC   3359976 . PMID   22654668. Archived from the original on 26 May 2012.
  20. Jensen, Jeffrey T.; Zelinski, Mary B.; Stanley, Jessica E.; Fanton, John W.; Stouffer, Richard L. (April 2008). "The phosphodiesterase 3 inhibitor ORG 9935 inhibits oocyte maturation in the naturally selected dominant follicle in Rhesus macaques". Contraception. 77 (4): 303–7. doi:10.1016/j.contraception.2008.01.003. PMC   2505347 . PMID   18342656.
  21. 1 2 Kustritz, Margaret V. Root (2007). "Determining the Optimal age for Gonadectomy of Dogs and Cats". Journal of the American Veterinary Medical Association. 231 (11): 1665–75. doi: 10.2460/javma.231.11.1665 . PMID   18052800. S2CID   4651194.
  22. "Early-Age (Prepubertal) Spay/Neuter of Dogs and Cats". Archived from the original on 16 December 2008.
  23. Early Neutering of Companion Animals Position Statement Archived 13 July 2010 at the Wayback Machine American Animal Hospital Association
  24. Dog and Cat Spay/Castration Archived 11 October 2011 at Wikiwix at CanadianVeterinarians.net
  25. Mechler, Esther; Bushby, Philip A (25 February 2020). "Fix by Five – an ethical responsibility?". Journal of Feline Medicine and Surgery. 22 (3): 207. doi:10.1177/1098612X20904655. PMID   32093578. S2CID   211477735.
  26. "Feline Fix by Five Months". Feline Fix by Five Months. Retrieved 26 February 2020.
  27. 1 2 Spain, C. Victor; Scarlett, Janet M.; Houpt, Katherine A. (1 February 2004). "Long-term risks and benefits of early-age gonadectomy in cats". Journal of the American Veterinary Medical Association. 224 (3): 372–379. doi:10.2460/javma.2004.224.372. PMID   14765796.
  28. 1 2 3 4 Spain, CV; Scarlett, JM; Houpt, KA (1 February 2004). "Long-term risks and benefits of early-age gonadectomy in dogs". Journal of the American Veterinary Medical Association. 224 (3): 380–7. doi: 10.2460/javma.2004.224.380 . PMID   14765797. S2CID   11696126.
  29. Howe, L. M.; Slater, M. R.; Boothe, H. W.; Hobson, H. P.; Fossum, T. W.; Spann, A. C.; Wilkie, W. S. (2000). "Long-term outcome of gonadectomy performed at an early age or traditional age in cats". Journal of the American Veterinary Medical Association. 217 (11): 1661–5. doi: 10.2460/javma.2000.217.1661 . PMID   11110455. S2CID   15153373.
  30. 1 2 Howe, Lisa M.; Slater, Margaret R.; Boothe, Harry W.; Hobson, H. Phil; Holcom, Jennifer L.; Spann, Angela C. (2001). "Long-term outcome of gonadectomy performed at an early age or traditional age in dogs". Journal of the American Veterinary Medical Association. 218 (2): 217–21. CiteSeerX   10.1.1.204.173 . doi:10.2460/javma.2001.218.217. PMID   11195826.
  31. 1 2 Howe (1997). "Short-term results and complications of prepubertal gonadectomy in cats and dogs". Journal of the American Veterinary Medical Association. 211 (1): 57–62. PMID   9215412.
  32. Kustritz, M. (2002). "Early spay-neuter: Clinical considerations". Clinical Techniques in Small Animal Practice. 17 (3): 124–8. doi:10.1053/svms.2002.34328. PMID   12476815. S2CID   41510596.
  33. De Bleser, B.; Brodbelt, D. C.; Gregory, N. G.; Martinez, T. A. (2009). "The association between acquired urinary sphincter mechanism incompetence in bitches and early spaying: A case-control study" (PDF). The Veterinary Journal. 187 (1): 42–47. doi:10.1016/j.tvjl.2009.11.004. PMID   20004121.
  34. Duerr; Duncan, C. G.; Savicky, R. S.; Park, R. D.; Egger, E. L.; Palmer, R. H. (2007). "Risk factors for excessive tibial plateau angle in large-breed dogs with cranial cruciate ligament disease". Journal of the American Veterinary Medical Association. 231 (11): 1688–91. doi: 10.2460/javma.231.11.1688 . PMID   18052804.
  35. Torres de la Riva, Gretel; Hart, Benjamin L.; Farver, Thomas B.; Oberbauer, Anita M.; Messam, Locksley L. McV.; Willits, Neil; Hart, Lynette A. (2013). "Neutering dogs". PLOS ONE. 8 (2): e55937. Bibcode:2013PLoSO...855937T. doi: 10.1371/journal.pone.0055937 . PMC   3572183 . PMID   23418479.
  36. Hart, Benjamin L.; Hart, Lynette A.; Thigpen, Abigail P.; Willits, Neil H. (2014). "Long-Term Health Effects of Neutering Dogs: Comparison of Labrador Retrievers with Golden Retrievers". PLOS ONE. 9 (7): e102241. Bibcode:2014PLoSO...9j2241H. doi: 10.1371/journal.pone.0102241 . PMC   4096726 . PMID   25020045.
  37. Farhoody, Parvene (26 February 2018). "Aggression toward Familiar People, Strangers, and Conspecifics in Gonadectomized and Intact Dogs". Frontiers in Veterinary Science. 5: 18. doi: 10.3389/fvets.2018.00018 . PMC   5834763 . PMID   29536014.
  38. Poulton, Gerry. "Mammary Tumours in Dogs" (PDF). Irish Veterinary Journal. Archived (PDF) from the original on 2 April 2015.
  39. Gobello, C.; et al. (23 August 2001). "Canine Pseudopregnancy: A Review" (PDF). IVIS.org. International Veterinary Information Service. Archived from the original (PDF) on 19 April 2011. Retrieved 13 April 2010.
  40. Egenvall, Agneta; Hagman, Ragnvi; Bonnett, Brenda N.; Hedhammar, Ake; Olson, Pekka; Lagerstedt, Anne-Sofie (2001). "Breed Risk of Pyometra in Insured Dogs in Sweden". Journal of Veterinary Internal Medicine. 15 (6): 530–538. doi:10.1111/j.1939-1676.2001.tb01587.x. PMID   11817057.
  41. "Results and complications of surgical treatment of pyometra: a review of 80 cases". Journal of the American Animal Hospital Association . Archived from the original on 19 March 2015.
  42. Brodbelt; Blissitt, K. J.; Hammond, R. A.; Neath, P. J.; Young, L. E.; Pfeiffer, D. U.; Wood, J. L. (2008). "The risk of death: the confidential enquiry into perioperative small animal fatalities" (PDF). Veterinary Anaesthesia and Analgesia. 35 (5): 365–73. doi:10.1111/j.1467-2995.2008.00397.x. PMID   18466167. S2CID   22017193.
  43. Colliard L.; Paragon B. M.; Lemuet B.; Bénet J. J.; Blanchard G. (February 2009). "Prevalence and risk factors of obesity in an urban population of healthy cats". Journal of Feline Medicine and Surgery. 11 (2): 135–40. doi: 10.1016/j.jfms.2008.07.002 . PMID   18774325. S2CID   25617418.
  44. Cave N. J.; Backus R. C.; Marks S. L.; Klasing K. C. (October 2007). "Oestradiol, but not genistein, inhibits the rise in food intake following gonadectomy in cats, but genistein is associated with an increase in lean body mass". Journal of Animal Physiology and Animal Nutrition. 91 (9–10): 400–10. doi:10.1111/j.1439-0396.2006.00667.x. PMID   17845247.
  45. McGreevy P. D.; Thomson P. C.; Pride C.; Fawcett A.; Grassi T.; Jones B. (May 2005). "Prevalence of obesity in dogs examined by Australian veterinary practices and the risk factors involved". Veterinary Record. 156 (22): 695–702. doi:10.1136/vr.156.22.695. PMID   15923551. S2CID   36725298.
  46. Priester; McKay, F. W. (1980). "The Occurrence of Tumors in Domestic Animals". National Cancer Institute Monograph (54): 1–210. PMID   7254313.
  47. Ru, G.; Terracini, B.; Glickman, L. (1998). "Host related risk factors for canine osteosarcoma". The Veterinary Journal. 156 (1): 31–9. doi:10.1016/S1090-0233(98)80059-2. PMID   9691849.
  48. Cooley, D. M.; Beranek, B. C.; et al. (1 November 2002). "Endogenous gonadal hormone exposure and bone sarcoma risk". Cancer Epidemiology, Biomarkers & Prevention. 11 (11): 1434–40. PMID   12433723. Archived from the original on 25 August 2003.
  49. Prymak C.; McKee L. J.; Goldschmidt M. H.; Glickman L. T. (1988). "Epidemiologic, clinical, pathologic, and prognostic characteristics of splenic hemangiosarcoma and splenic hematoma in dogs: 217 cases (1985)". Journal of the American Veterinary Medical Association. 193 (6): 706–712. PMID   3192450.
  50. Ware, Wendy A.; Hopper, David L. (1999). "Cardiac Tumors in Dogs: 1982–1995". Journal of Veterinary Internal Medicine. 13 (2): 95–103. doi:10.1892/0891-6640(1999)013<0095:CTID>2.3.CO;2. PMID   10225598.
  51. 1 2 3 Sanborn, L. J. (14 May 2007). "Long-Term Health Risks and Benefits Associated with Spay / Neuter in Dogs" (PDF). Archived (PDF) from the original on 7 January 2010. Retrieved 13 April 2010.
  52. Moore G. E.; Guptill L. F.; Ward M. P.; Glickman N. W.; Faunt K. F.; Lewis H. B.; Glickman L.T. (2005). "Adverse events diagnosed within three days of vaccine administration in dogs". Journal of the American Veterinary Medical Association. 227 (7): 1102–1108. doi: 10.2460/javma.2005.227.1102 . PMID   16220670. S2CID   8625559.
  53. "Baldness and Hormone-Related Skin Disorders in Dogs". m.petmd.com. Retrieved 28 December 2019.
  54. Slauterbeck, J. R.; Pankratz, K.; Xu, K. T.; Bozeman, S. C.; Hardy, D. M. (December 2004). "Canine Ovariohysterectomy and Orchiectomy Increases the Prevalence of ACL Injury". Clinical Orthopaedics and Related Research. 429 (429): 301–5. doi:10.1097/01.blo.0000146469.08655.e2. PMID   15577502. S2CID   23047078.
  55. Torres de la Riva, Gretel (2013). "Neutering Dogs: Effects on Joint Disorders and Cancers in Golden Retrievers". PLOS ONE. 8 (2): e55937. Bibcode:2013PLoSO...855937T. doi: 10.1371/journal.pone.0055937 . PMC   3572183 . PMID   23418479.
  56. Teske, E.; Naan, E. C.; Van Dijk, E. M.; Van Garderen, E.; Schalken, J. A. (2002). "Canine prostate carcinoma: epidemiological evidence of an increased risk in castrated dogs". Molecular and Cellular Endocrinology. 197 (1–2): 251–5. doi:10.1016/S0303-7207(02)00261-7. PMID   12431819. S2CID   7080561.
  57. Sorenmo, K. U.; Goldschmidt, M.; Shofer, F.; Goldkamp, C.; Ferracone, J. (2003). "Immunohistochemical characterization of canine prostatic carcinoma and correlation with castration status and castration time". Veterinary and Comparative Oncology. 1 (1): 48–56. doi:10.1046/j.1476-5829.2003.00007.x. PMID   19379330.
  58. Hart (2001). "Effect of gonadectomy on subsequent development of age-related cognitive impairment in dogs". Journal of the American Veterinary Medical Association. 219 (1): 51–6. doi: 10.2460/javma.2001.219.51 . PMID   11439769. S2CID   17565731.
  59. Lekcharoensuk; Osborne, C. A.; Lulich, J. P. (2001). "Epidemiologic study of risk factors for lower urinary tract diseases in cats". Journal of the American Veterinary Medical Association. 218 (9): 1429–35. doi: 10.2460/javma.2001.218.1429 . PMID   11345305.
  60. Aaron, A.; Eggleton, K.; Power, C.; Holt, P. E. (1996). "Urethral sphincter mechanism incompetence in male dogs: a retrospective analysis of 54 cases". Veterinary Record. 139 (22): 542–6. doi:10.1136/vr.139.22.542. PMID   8961524. S2CID   5642622.
  61. Beauvais, W.; Cardwell, J. M.; Brodbelt, D. C. (2012). "The effect of neutering on the risk of urinary incontinence in bitches - a systematic review". Journal of Small Animal Practice. 53 (4): 198–204. doi:10.1111/j.1748-5827.2011.01176.x. PMID   22353203.
  62. "Merck Animal Health USA". www.merck-animal-health-usa.com. Retrieved 14 December 2019.
  63. Panciera D. L. (1994). "Hypothyroidism in dogs: 66 cases (1987–1992)". Journal of the American Veterinary Medical Association. 204 (5): 761–767. PMID   8175472.
  64. Kobelt A. J.; Hemsworth P. H.; Barnett J. L.; Coleman G. J. (2003). "A survey of dog ownership in suburban Australia-conditions and behaviour problems". Applied Animal Behaviour Science. 82 (2): 137–148. doi:10.1016/S0168-1591(03)00062-5.
  65. 1 2 Casey R. A.; Loftus B.; Bolster C.; Richards G. J.; Blackwell E. J. (March 2014). "Human directed aggression in domestic dogs (Canis familiaris): Occurrence in different contexts and risk factors". Applied Animal Behaviour Science. 152: 52–63. doi:10.1016/j.applanim.2013.12.003. hdl: 10983/14199 .
  66. The Effects of Spaying and Neutering on Canine Behavior Archived 22 October 2014 at the Wayback Machine James O’Heare, Association of Animal Behavior Professionals
  67. Guy N. C.; Luescher U. A.; Dohoo S. E.; Spangler E.; Miller J. B; Dohoo I. R.; Bate L. A. (2001). "A case series of biting dogs: characteristics of the dogs, their behaviour, and their victims". Applied Animal Behaviour Science. 74: 15–57. doi:10.1016/S0168-1591(01)00155-1.
  68. 1 2 Takeuchi Y.; Ogata N.; Houpt J. A.; Scarlett J. M. (2001). "Differences in background and outcome of three behavior problems of dogs". Applied Animal Behaviour Science. 70 (4): 297–308. doi:10.1016/S0168-1591(00)00156-8. PMID   11179553.
  69. Neilson J.; Eckstein R.; Hart B. (1997). "Effects on castration on problem behaviors in male dogs with reference to age and duration of behavior". Journal of the American Veterinary Medical Association. 211 (2): 180–182. PMID   9227747.
  70. Podberscek A. L.; Serpell J. A. (1996). "The English Cocker Spaniel: preliminary findings on aggressive behaviour". Applied Animal Behaviour Science. 47 (1–2): 75–89. doi:10.1016/0168-1591(95)01012-2.
  71. Meuten D. J. Tumors in Domestic Animals. 4th Edn. Iowa State Press, Blackwell Publishing Company, Ames, Iowa, p. 575
  72. Spain C. V.; Scarlett J. M.; Houpt K. A. (2004). "Long-term risks and benefits of early-age gonadectomy in dogs". Journal of the American Veterinary Medical Association. 224 (3): 380–387. doi: 10.2460/javma.2004.224.380 . PMID   14765797. S2CID   11696126.
  73. 1 2 3 4 5 6 7 8 9 Amundson Romich, J (2013). "Chapter 5: What's in a name". An Illustrated Guide to Veterinary Medical Terminology (4th ed.). Cengage Learning. pp. 115–126. ISBN   9781133709459.
  74. 1 2 Campbell, Joseph K. (1990). Dibble sticks, donkeys, and diesels : machines in crop production. Manila, Philippines: International Rice Research Institute. ISBN   9789711041854.
  75. Hasheider, P; Johnson, S (2014). The Complete Illustrated Guide to Farming. MBI Publishing Company. p. 85. ISBN   9781627881371.
  76. 1 2 Vanhorn, B; Clark, R (2012). Veterinary Assisting Fundamentals & Applications. Cengage Learning. p. 123. ISBN   9781133417040.
  77. Peek, Hedley; Aflalo, Frederick George, eds. (1897). The Encyclopaedia of Sport, Volume 1. London: Lawrence and Bullen. p. 573.
  78. "What some religions say about sterilisation". Archived from the original on 17 March 2008. Retrieved 8 March 2008.
  79. http://www.spca.org.my/neuter.htm#5 Archived 13 January 2008 at the Wayback Machine Spaying/Neutering Information
  80. "What does Jewish law say about neutering male pets?". Archived from the original on 14 March 2008.
  81. Feinstein, Moshe. Igrot Moshe.
  82. "CHAI – Why Spay/Neuter is Crucial". www.chai.org.il. Archived from the original on 15 March 2008.