Pulmonary artery banding

Last updated
Pulmonary artery banding
Specialty cardiology

Pulmonary Artery Banding (PAB) was introduced by Muller and Dammann in 1951 as a surgical technique to reduce excessive pulmonary blood flow in infants suffering from congenital heart defects. [1] PAB is a palliative operation as it does not correct the problems, but attempts to improve abnormal heart function, relieve symptoms and reduce high pressure in the lungs. The use of PAB has decreased over the years due to advancements in definitive surgical repairs, however PAB still has widespread clinical use. PAB is commonly used in patients when definitive surgical repair is not feasible. [2] [3]

Contents

History

The technique was first described by Muller and Dammann at UCLA in 1951. [4] In recent years, the use of this technique has declined as studies have indicated that early definitive repair is preferable to this form of palliation. [5]

Indications

The heart is separated into four chambers. Deoxygenated blood enters into the right chambers of the heart and continues through the pulmonary arteries to be oxygenated in the lungs. Oxygenated blood returns into the left side of the heart and out to the rest of the body, known as the systemic circulation. In congenital heart defects such as ventricular septal defects (VSD) and Atrioventricular septal defects (AVSD), there may be one or multiple holes in the walls separating adjacent chambers. This causes left-to-right shunting of blood as oxygenated blood can flow back to the right side of the heart, resulting in a mixture of oxygenated and deoxygenated blood. Increased amounts of blood on the right side of the heart cause an excess of blood flow into the lungs (pulmonary circulation) and increased pulmonary resistance due to the buildup of pressure. [6]

Surgical technique

The goal of PAB is to reduce pulmonary artery pressure and excess pulmonary blood flow. PAB involves the insertion of a band around the pulmonary artery to reduce blood flow into the lungs. A variety of banding materials are used; one commonly used material is polytetrafluoroethylene. [7] The band is wrapped around the main pulmonary artery and fixed into place. Once inserted, the band is tightened, narrowing the diameter of the pulmonary artery to reduce blood flow to the lungs and reduce pulmonary artery pressure. PAB followed by later repair is a common surgical alternative when early definitive repair is high-risk. [8]

Limiting factors

One major difficulty with PAB is assessing the optimal tightness of band, [9] as minimal changes to the diameter of the pulmonary artery can have drastic effects on resistance and blood flow. The pulmonary band can also migrate away from the original placement and lead to stenosis, [10] in which the blood vessel becomes too narrow. There have also been reports of hardening of the vessels around the band due to buildup of calcium deposits and scarring of the pulmonary artery wall beneath the band, which can also inhibit blood flow. [11] Additional surgeries to adjust band tightness occur in up to one-third of patients. [12] Erosion of the band through the pulmonary artery has been reported, which can lead to the formation of blood clots. This is more evident in bands made of umbilical tape or silk rather than Silastic or Teflon bands. [13]

Types

Due to the varying complications, different modifications of PAB have been developed to improve outcomes. Adjustable pulmonary artery banding has been available since 1972, [14] allowing variable constriction. FloWatch (Leman Medical, Geneva, Switzerland: www.lemanmedical.com), an adjustable band, was created and has successfully been tested to overcome complications due to non-optimal sizing of the band. FloWatch is a wireless, battery-free, implantable device that allows the band size to be adjusted without the need for additional surgeries or other invasive procedures. [15] The narrowing of the pulmonary artery can be controlled weeks or even months after the operation. [16] Reports also show that the recovery period in patients that obtained the FloWatch device was faster and smoother in comparison to those that received the traditional PAB method. [17] However FloWatch is only suitable for children with a body weight ranging from 3 kg to10kg. [18]

Related Research Articles

Tetralogy of Fallot Type of congenital heart defect

Tetralogy of Fallot (TOF), formerly known as Steno-Fallot tetralogy, is a congenital heart defect characterized by four specific cardiac defects. Classically, the four defects are:

Cardiopulmonary bypass Technique that temporarily takes over the function of the heart and lungs during surgery

Cardiopulmonary bypass (CPB) is a technique in which a machine temporarily takes over the function of the heart and lungs during surgery, maintaining the circulation of blood and the oxygen content of the patient's body. The CPB pump itself is often referred to as a heart–lung machine or "the pump". Cardiopulmonary bypass pumps are operated by perfusionists. CPB is a form of extracorporeal circulation. Extracorporeal membrane oxygenation is generally used for longer-term treatment.

Cardiothoracic surgery Medical specialty involved in surgical treatment of organs inside the thorax

Cardiothoracic surgery is the field of medicine involved in surgical treatment of organs inside the thoracic cavity — generally treatment of conditions of the heart, lungs, and other pleural or mediastinal structures.

dextro-Transposition of the great arteries Medical condition

dextro-Transposition of the great arteries is a potentially life-threatening birth defect in the large arteries of the heart. The primary arteries are transposed.

Congenital heart defect Defect in the structure of the heart that is present at birth

A congenital heart defect (CHD), also known as a congenital heart anomaly and congenital heart disease, is a defect in the structure of the heart or great vessels that is present at birth. A congenital heart defect is classed as a cardiovascular disease. Signs and symptoms depend on the specific type of defect. Symptoms can vary from none to life-threatening. When present, symptoms may include rapid breathing, bluish skin (cyanosis), poor weight gain, and feeling tired. CHD does not cause chest pain. Most congenital heart defects are not associated with other diseases. A complication of CHD is heart failure.

The Rastelli procedure is an open heart surgical procedure developed by Italian physician and cardiac surgery researcher, Giancarlo Rastelli, in 1967 at the Mayo Clinic, Ajmer and involves using a pulmonary or aortic homograft conduit to relieve pulmonary obstruction in double outlet right ventricle with pulmonary stenosis.

Transposition of the great vessels Group of congenital heart defects involving an abnormal spatial arrangement of any of the great vessels: superior and/or inferior venae cavae, pulmonary artery, pulmonary veins, and aorta

Transposition of the great vessels (TGV) is a group of congenital heart defects involving an abnormal spatial arrangement of any of the great vessels: superior and/or inferior venae cavae, pulmonary artery, pulmonary veins, and aorta. Congenital heart diseases involving only the primary arteries belong to a sub-group called transposition of the great arteries (TGA), which is considered the most common congenital heart lesion that presents in neonates.

Pulmonary atresia Medical condition

Pulmonary atresia is a congenital malformation of the pulmonary valve in which the valve orifice fails to develop. The valve is completely closed thereby obstructing the outflow of blood from the heart to the lungs. The pulmonary valve is located on the right side of the heart between the right ventricle and pulmonary artery. In a normal functioning heart, the opening to the pulmonary valve has three flaps that open and close

Persistent truncus arteriosus Medical condition

Persistent truncus arteriosus (PTA), often referred to simply as truncus arteriosus, is a rare form of congenital heart disease that presents at birth. In this condition, the embryological structure known as the truncus arteriosus fails to properly divide into the pulmonary trunk and aorta. This results in one arterial trunk arising from the heart and providing mixed blood to the coronary arteries, pulmonary arteries, and systemic circulation. For the International Classification of Diseases (ICD-11), the International Paediatric and Congenital Cardiac Code (IPCCC) was developed to standardize the nomenclature of congenital heart disease. Under this system, English is now the official language, and persistent truncus arteriosus should properly be termed common arterial trunk.

Tricuspid atresia Medical condition

Tricuspid atresia is a form of congenital heart disease whereby there is a complete absence of the tricuspid valve. Therefore, there is an absence of right atrioventricular connection. This leads to a hypoplastic (undersized) or absent right ventricle. This defect is contracted during prenatal development, when the heart does not finish developing. It causes the systemic circulation to be filled with relatively deoxygenated blood. Because of this, hypoxia occurs, so other defects must occur to maintain blood flow. Because of the lack of an atrioventricular connection, an atrial septal defect (ASD) must be present to fill the left atrium and the left ventricle with blood. Since there is a lack of a right ventricle, there must be a way to pump blood into the pulmonary arteries, and this is accomplished by a ventricular septal defect (VSD). The causes of tricuspid atresia are unknown.

Levo-Transposition of the great arteries is an acyanotic congenital heart defect in which the primary arteries are transposed, with the aorta anterior and to the left of the pulmonary artery; the morphological left and right ventricles with their corresponding atrioventricular valves are also transposed.

Norwood procedure

The Norwood procedure is the first of three surgeries intended to create a new functional systemic circuit in patients with hypoplastic left heart syndrome and other complex heart defects with single ventricle physiology. The first successful Norwood procedure involving the use of a cardiopulmonary bypass was reported by Dr. William Imon Norwood, Jr. and colleagues in 1981.

Double outlet right ventricle (DORV) is a form of congenital heart disease where both of the great arteries connect to the right ventricle (RV). In some cases it is found that this occurs on the left side of the heart rather than the right side.

A right-to-left shunt is a cardiac shunt which allows blood to flow from the right heart to the left heart. This terminology is used both for the abnormal state in humans and for normal physiological shunts in reptiles.

Atrial septostomy Surgical procedure on the heart

Atrial septostomy is a surgical procedure in which a small hole is created between the upper two chambers of the heart, the atria. This procedure is primarily used to palliate dextro-Transposition of the great arteries or d-TGA, a life-threatening cyanotic congenital heart defect seen in infants. It is performed prior to an arterial switch operation. Atrial septostomy has also seen limited use as a surgical treatment for pulmonary hypertension. The first atrial septostomy was developed by Vivien Thomas in a canine model and performed in humans by Alfred Blalock. The Rashkind balloon procedure, a common atrial septostomy technique, was developed in 1966 by American cardiologist William Rashkind at the Children's Hospital of Philadelphia.

Bidirectional Glenn procedure

The bidirectional Glenn (BDG) shunt, or bidirectional cavopulmonary anastomosis, is a surgical technique used in pediatric cardiac surgery procedure used to temporarily improve blood oxygenation for patients with a congenital cardiac defect resulting in a single functional ventricle. Creation of a bidirectional shunt reduces the amount of blood volume that the heart needs to pump at the time of surgical repair with the Fontan procedure.

Anomalous pulmonary venous connection Medical condition

Anomalous pulmonary venous connection is a congenital defect of the pulmonary veins.

Hypoplastic right heart syndrome is a congenital heart defect in which the right atrium and right ventricle are underdeveloped. This defect causes inadequate blood flow to the lungs and thus, a blue or cyanotic infant.

The Senning procedure is an atrial switch heart operation performed to treat transposition of the great arteries. It is named after its inventor, the Swedish cardiac surgeon Åke Senning (1915–2000), also known for implanting the first permanent cardiac pacemaker in 1958.

Absent pulmonary valve syndrome is a congenital heart defect that occurs when the flaps of the pulmonary valve do not develop or are severely underdeveloped (hypoplasia) resulting in aneurysms (dilation) of the pulmonary arteries and softening of the trachea and bronchi (tracheobronchomalacia). Usually, APVS occurs together with other congenital heart defects, most commonly ventricular septal defect and right ventricular outflow tract obstruction. It is sometimes considered a variant of Tetralogy of Fallot.

References

  1. Muller WH, Dammann JF. Treatment of certain congenital malformations of the heart by the creation of pulmonic stenosis to reduce pulmonary hypertension and excessive pulmonary blood flow: A preliminary report. Surgery Gynecol Obstet. 1952;95:213.
  2. Locker, Chaim; Dearani, Joseph A.; O'Leary, Patrick W.; Puga, Francisco J. (2008). "Endoluminal Pulmonary Artery Banding: Technique, Applications and Results". The Annals of Thoracic Surgery. 86 (2): 588–94, discussion 594–5. doi:10.1016/j.athoracsur.2008.04.041. PMID   18640338.
  3. Shabir, Bhimji (10 Dec 2016). Sett, Suvro S (ed.). "Pulmonary Artery Banding". Medscape . WebMD.{{cite web}}: CS1 maint: url-status (link)
  4. Muller WH, Dammann JF. Treatment of certain congenital malformations of the heart by the creation of pulmonic stenosis to reduce pulmonary hypertension and excessive pulmonary blood flow: A preliminary report. Surgery Gynecol Obstet. 1952;95:213.
  5. Quinn DW, McGuirk SP, Metha C, et al. The morphologic left ventricle that requires training by means of pulmonary artery banding before the double-switch procedure for congenitally corrected transposition of the great arteries is at risk of late dysfunction. J Thorac Cardiovasc Surg. May 2008;135(5):1137-44, 1144.e1-2.
  6. Locker, Chaim, et al. "Endoluminal Pulmonary Artery Banding: Technique, Applications and Results." The Annals of Thoracic Surgery 86.2 (2008): 588,94;discussion 594-5. Biological Sciences. Web. 1 Mar. 2013.
  7. Takayama, Hiroo, et al. "Mortality of Pulmonary Artery Banding in the Current Era: Recent Mortality of PA Banding." The Annals of Thoracic Surgery 74.4 (2002): 1219,23; discussion 1223-4. Biological Sciences. Web. 1 Mar. 2013.
  8. Dhannapuneni, Ramana Rao V., et al. "Complete Atrioventricular Septal Defect: Outcome of Pulmonary Artery Banding Improved by Adjustable Device." The Journal of Thoracic and Cardiovascular Surgery 141.1 (2011): 179-82. Biological Sciences. Web. 1 Mar. 2013.
  9. Holmström, Henrik, et al. "Balloon Dilatation of Pulmonary Artery Banding: Norwegian Experience Over More than 20 Years." European heart journal 33.1 (2012): 61-6. Biological Sciences. Web. 1 Mar. 2013.
  10. Locker, Chaim, et al. "Endoluminal Pulmonary Artery Banding: Technique, Applications and Results." The Annals of Thoracic Surgery 86.2 (2008): 588,94;discussion 594-5. Biological Sciences. Web. 1 Mar. 2013.
  11. Mahle, S., et al. "Pulmonary Artery Banding: Long-Term Results in 63 Patients." The Annals of Thoracic Surgery 27.3 (1979): 216-24. Biological Sciences. Web. 1 Mar. 2013.
  12. Holmström, Henrik, et al. "Balloon Dilatation of Pulmonary Artery Banding: Norwegian Experience Over More than 20 Years." European heart journal 33.1 (2012): 61-6. Biological Sciences. Web. 1 Mar. 2013.
  13. Mahle, S., et al. "Pulmonary Artery Banding: Long-Term Results in 63 Patients." The Annals of Thoracic Surgery 27.3 (1979): 216-24. Biological Sciences. Web. 1 Mar. 2013.
  14. Trusler, G. A., and W. T. Mustard. "A Method of Banding the Pulmonary Artery for Large Isolated Ventricular Septal Defect with and without Transposition of the Great Arteries." The Annals of Thoracic Surgery 13.4 (1972): 351-5. Biological Sciences. Web. 1 Mar. 2013.
  15. Bonnet, Damien, et al. "Early Clinical Results of the Telemetric Adjustable Pulmonary Artery Banding FloWatch-PAB."Circulation 110.11 (2004): II158-63. Biological Sciences. Web. 1 Mar. 2013.
  16. Corno, Antonio F., et al. "FloWatch Versus Conventional Pulmonary Artery Banding." The Journal of Thoracic and Cardiovascular Surgery 134.6 (2007): 1413,9; discussion 1419-20. Biological Sciences. Web. 1 Mar. 2013.
  17. Corno, Antonio F., et al. "FloWatch Versus Conventional Pulmonary Artery Banding." The Journal of Thoracic and Cardiovascular Surgery 134.6 (2007): 1413,9; discussion 1419-20. Biological Sciences. Web. 1 Mar. 2013.
  18. Holmström, Henrik, et al. "Balloon Dilatation of Pulmonary Artery Banding: Norwegian Experience Over More than 20 Years." European heart journal 33.1 (2012): 61-6. Biological Sciences. Web. 1 Mar. 2013.