Purmorphamine

Last updated
Purmorphamine
Purmorphamine structure.png
Identifiers
  • 9-cyclohexyl-N-(4-morpholinophenyl)-2-(naphthalen-1-yloxy)-9H-purin-6-amine
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C31H32N6O2
Molar mass 520.637 g·mol−1
3D model (JSmol)
  • C1(N(C2CCCCC2)C=N3)=C3C(NC4=CC=C(N5CCOCC5)C=C4)=NC(OC6=CC=CC7=C6C=CC=C7)=N1
  • InChI=1S/C31H32N6O2/c1-2-9-25(10-3-1)37-21-32-28-29(33-23-13-15-24(16-14-23)36-17-19-38-20-18-36)34-31(35-30(28)37)39-27-12-6-8-22-7-4-5-11-26(22)27/h4-8,11-16,21,25H,1-3,9-10,17-20H2,(H,33,34,35)
  • Key:FYBHCRQFSFYWPY-UHFFFAOYSA-N

Purmorphamine was the first small-molecule agonist developed for the protein Smoothened, a key part of the hedgehog signaling pathway, which is involved in bone growth, cardiovascular regeneration and brain development as well as having a number of other functions in the body. Purmorphamine has been shown to induce osteogenesis in bone tissue as well as influencing growth and differentiation of neurons in the brain. [1] [2] [3] [4] [5] [6] [7]

Related Research Articles

<span class="mw-page-title-main">Cellular differentiation</span> Developmental biology

Cellular differentiation is the process in which a stem cell changes from one type to a differentiated one. Usually, the cell changes to a more specialized type. Differentiation happens multiple times during the development of a multicellular organism as it changes from a simple zygote to a complex system of tissues and cell types. Differentiation continues in adulthood as adult stem cells divide and create fully differentiated daughter cells during tissue repair and during normal cell turnover. Some differentiation occurs in response to antigen exposure. Differentiation dramatically changes a cell's size, shape, membrane potential, metabolic activity, and responsiveness to signals. These changes are largely due to highly controlled modifications in gene expression and are the study of epigenetics. With a few exceptions, cellular differentiation almost never involves a change in the DNA sequence itself. However, metabolic composition does get altered quite dramatically where stem cells are characterized by abundant metabolites with highly unsaturated structures whose levels decrease upon differentiation. Thus, different cells can have very different physical characteristics despite having the same genome.

<span class="mw-page-title-main">Paracrine signaling</span> Form of localized cell signaling

In cellular biology, paracrine signaling is a form of cell signaling, a type of cellular communication in which a cell produces a signal to induce changes in nearby cells, altering the behaviour of those cells. Signaling molecules known as paracrine factors diffuse over a relatively short distance, as opposed to cell signaling by endocrine factors, hormones which travel considerably longer distances via the circulatory system; juxtacrine interactions; and autocrine signaling. Cells that produce paracrine factors secrete them into the immediate extracellular environment. Factors then travel to nearby cells in which the gradient of factor received determines the outcome. However, the exact distance that paracrine factors can travel is not certain.

The Wnt signaling pathways are a group of signal transduction pathways which begin with proteins that pass signals into a cell through cell surface receptors. The name Wnt is a portmanteau created from the names Wingless and Int-1. Wnt signaling pathways use either nearby cell-cell communication (paracrine) or same-cell communication (autocrine). They are highly evolutionarily conserved in animals, which means they are similar across animal species from fruit flies to humans.

<span class="mw-page-title-main">Morphogen</span> Biological substance that guides development by non-uniform distribution

A morphogen is a substance whose non-uniform distribution governs the pattern of tissue development in the process of morphogenesis or pattern formation, one of the core processes of developmental biology, establishing positions of the various specialized cell types within a tissue. More specifically, a morphogen is a signaling molecule that acts directly on cells to produce specific cellular responses depending on its local concentration.

A biochemical cascade, also known as a signaling cascade or signaling pathway, is a series of chemical reactions that occur within a biological cell when initiated by a stimulus. This stimulus, known as a first messenger, acts on a receptor that is transduced to the cell interior through second messengers which amplify the signal and transfer it to effector molecules, causing the cell to respond to the initial stimulus. Most biochemical cascades are series of events, in which one event triggers the next, in a linear fashion. At each step of the signaling cascade, various controlling factors are involved to regulate cellular actions, in order to respond effectively to cues about their changing internal and external environments.

<span class="mw-page-title-main">Transforming growth factor beta</span> Cytokine

Transforming growth factor beta (TGF-β) is a multifunctional cytokine belonging to the transforming growth factor superfamily that includes three different mammalian isoforms and many other signaling proteins. TGFB proteins are produced by all white blood cell lineages.

<span class="mw-page-title-main">GLI1</span> Protein-coding gene in humans

Zinc finger protein GLI1 also known as glioma-associated oncogene is a protein that in humans is encoded by the GLI1 gene. It was originally isolated from human glioblastoma cells.

<span class="mw-page-title-main">Cyclopamine</span> Chemical compound

Cyclopamine (11-deoxojervine) is a naturally occurring steroidal alkaloid. It is a teratogenic component of corn lily, which when consumed during gestation has been demonstrated to induce birth defects, including the development of a single eye (cyclopia) in offspring. The molecule was named after this effect, which was originally observed by Idaho lamb farmers in 1957 after their herds gave birth to cycloptic lambs. It then took more than a decade to identify corn lily as the culprit. Later work suggested that differing rain patterns had changed grazing behaviours, which led to a greater quantity of corn lily to be ingested by pregnant sheep. Cyclopamine interrupts the sonic hedgehog signalling pathway, instrumental in early development, ultimately causing birth defects.

In biology, cell signaling or cell communication is the ability of a cell to receive, process, and transmit signals with its environment and with itself. Cell signaling is a fundamental property of all cellular life in prokaryotes and eukaryotes. Signals that originate from outside a cell can be physical agents like mechanical pressure, voltage, temperature, light, or chemical signals. Cell signaling can occur over short or long distances, and as a result can be classified as autocrine, juxtacrine, intracrine, paracrine, or endocrine. Signaling molecules can be synthesized from various biosynthetic pathways and released through passive or active transports, or even from cell damage.

The Hedgehog signaling pathway is a signaling pathway that transmits information to embryonic cells required for proper cell differentiation. Different parts of the embryo have different concentrations of hedgehog signaling proteins. The pathway also has roles in the adult. Diseases associated with the malfunction of this pathway include cancer.

<span class="mw-page-title-main">Smoothened</span> Protein-coding gene in the species Homo sapiens

Smoothened is a protein that in humans is encoded by the SMO gene. Smoothened is a Class Frizzled G protein-coupled receptor that is a component of the hedgehog signaling pathway and is conserved from flies to humans. It is the molecular target of the natural teratogen cyclopamine. It also is the target of vismodegib, the first hedgehog pathway inhibitor to be approved by the U.S. Food and Drug Administration (FDA).

<span class="mw-page-title-main">Bone morphogenetic protein 4</span> Human protein and coding gene

Bone morphogenetic protein 4 is a protein that in humans is encoded by BMP4 gene. BMP4 is found on chromosome 14q22-q23.

The transforming growth factor beta (TGFB) signaling pathway is involved in many cellular processes in both the adult organism and the developing embryo including cell growth, cell differentiation, cell migration, apoptosis, cellular homeostasis and other cellular functions. The TGFB signaling pathways are conserved. In spite of the wide range of cellular processes that the TGFβ signaling pathway regulates, the process is relatively simple. TGFβ superfamily ligands bind to a type II receptor, which recruits and phosphorylates a type I receptor. The type I receptor then phosphorylates receptor-regulated SMADs (R-SMADs) which can now bind the coSMAD SMAD4. R-SMAD/coSMAD complexes accumulate in the nucleus where they act as transcription factors and participate in the regulation of target gene expression.

Prostaglandin EP<sub>2</sub> receptor Protein-coding gene in the species Homo sapiens

Prostaglandin E2 receptor 2, also known as EP2, is a prostaglandin receptor for prostaglandin E2 (PGE2) encoded by the human gene PTGER2: it is one of four identified EP receptors, the others being EP1, EP3, and EP4, which bind with and mediate cellular responses to PGE2 and also, but with lesser affinity and responsiveness, certain other prostanoids (see Prostaglandin receptors). EP has been implicated in various physiological and pathological responses.

<span class="mw-page-title-main">FGF9</span> Protein-coding gene in the species Homo sapiens

Glia-activating factor is a protein that in humans is encoded by the FGF9 gene.

<span class="mw-page-title-main">CXXC5</span> Protein-coding gene in the species Homo sapiens

CXXC-type zinc finger protein 5 is a protein that is encoded by the CXXC5 gene in humans.

Pancreatic stellate cells (PaSCs) are classified as myofibroblast-like cells that are located in exocrine regions of the pancreas. PaSCs are mediated by paracrine and autocrine stimuli and share similarities with the hepatic stellate cell. Pancreatic stellate cell activation and expression of matrix molecules constitute the complex process that induces pancreatic fibrosis. Synthesis, deposition, maturation and remodelling of the fibrous connective tissue can be protective, however when persistent it impedes regular pancreatic function.

<span class="mw-page-title-main">Hes3 signaling axis</span>

The STAT3-Ser/Hes3 signaling axis is a specific type of intracellular signaling pathway that regulates several fundamental properties of cells.

<span class="mw-page-title-main">Smoothened agonist</span> Chemical compound

Smoothened agonist (SAG) was one of the first small-molecule agonists developed for the protein Smoothened, a key part of the hedgehog signaling pathway, which is involved in brain development as well as having a number of other functions in the body.

Hedgehog pathway inhibitors, also sometimes called hedgehog inhibitors, are small molecules that inhibit the activity of a component of the Hedgehog signaling pathway. Due to the role of aberrant Hedgehog signaling in tumor progression and cancer stem cell maintenance across cancer types, inhibition of the Hedgehog signaling pathway can be a useful strategy for restricting tumor growth and for preventing the recurrence of the disease post-surgery, post-radiotherapy, or post-chemotherapy. Thus, Hedgehog pathway inhibitors are an important class of anti-cancer drugs. At least three Hedgehog pathway inhibitors have been approved by the Food and Drug Administration (FDA) for cancer treatment. These include vismodegib and sonidegib, both inhibitors of Smoothened (SMO), which are being used for the treatment of basal cell carcinoma. Arsenic trioxide, an inhibitor of GLI transcription factors, is being used for the treatment of acute promyelocytic leukemia. In addition, multiple other Hedgehog pathway inhibitors are in different phases of clinical trials.

References

  1. Wu X, Ding S, Ding Q, Gray NS, Schultz PG (December 2002). "A small molecule with osteogenesis-inducing activity in multipotent mesenchymal progenitor cells". Journal of the American Chemical Society. 124 (49): 14520–1. doi:10.1021/ja0283908. PMID   12465946.
  2. Wu X, Walker J, Zhang J, Ding S, Schultz PG (September 2004). "Purmorphamine induces osteogenesis by activation of the hedgehog signaling pathway". Chemistry & Biology. 11 (9): 1229–38. doi: 10.1016/j.chembiol.2004.06.010 . PMID   15380183.
  3. Sinha S, Chen JK (January 2006). "Purmorphamine activates the Hedgehog pathway by targeting Smoothened". Nature Chemical Biology. 2 (1): 29–30. doi:10.1038/nchembio753. PMID   16408088. S2CID   29035911.
  4. Lee SJ, Lee HK, Cho SY, Choi JK, Shin HK, Kwak EJ, et al. (October 2008). "Identification of osteogenic purmorphamine derivatives". Molecules and Cells. 26 (4): 380–6. PMID   18695357.
  5. Stanton BZ, Peng LF (January 2010). "Small-molecule modulators of the Sonic Hedgehog signaling pathway". Molecular BioSystems. 6 (1): 44–54. doi:10.1039/b910196a. PMID   20024066.
  6. Aravamudhan A, Ramos DM, Nip J, Subramanian A, James R, Harmon MD, et al. (2013). "Osteoinductive small molecules: growth factor alternatives for bone tissue engineering". Current Pharmaceutical Design. 19 (19): 3420–8. doi:10.2174/1381612811319190008. PMID   23432678.
  7. Sharma S, Kaur A, Sharma S (April 2018). "Preconditioning potential of purmorphamine: a hedgehog activator against ischaemic reperfusion injury in ovariectomised rat heart". Perfusion. 33 (3): 209–218. doi:10.1177/0267659117732401. PMID   29065787. S2CID   3978923.