Pusher centrifuge

Last updated
Pusher Centrifuge Pusher Centrifuge.jpg
Pusher Centrifuge

A pusher centrifuge is a type of filtration technique that offers continuous operation to de-water and wash materials such as relatively in-compressible feed solids, free-draining crystalline, polymers and fibrous substances. It consists of a constant speed rotor and is fixed to one of several baskets. This assembly is applied with centrifugal force that is generated mechanically for smaller units and hydraulically for larger units to enable separation.

Contents

Pusher centrifuges can be used for a variety of applications. They were typically used in inorganic industries and later, extensively in chemical industries such as organic intermediates, plastics, food processing and rocket fuels.

A suspension feed enters the process to undergo pre-acceleration and distribution. The subsequent processes involve main filtration and intermediate de-watering, after which the main filtrate is collected. Wash liquid enters the washing step and final de-watering follows. Wash filtrate is extracted from these two stages. The final step involves discharge of solids which are then collected as the finished product. These process steps take place simultaneously in different parts of the centrifuge.

It is widely accepted due to its ease of modification, such as gas-tight and explosion protection configurations.

Applications

Pusher centrifuges are mainly used in chemical, pharmaceutical, food (mainly to produce sodium chloride as common salt) and mineral industries. During the twentieth century, the pusher centrifuge was used for desiccation of comparatively large crystals and solids. [1]

Although pushers are typically used for inorganic products, they appear in chemical industries such as organic intermediates, plastics, food processing and rocket fuels. Organic intermediates include paraxylene, adipic acid, oxalic acid caprolactam, nitrocellulose, carboxymethylcellulose, etc.

In food processing, pusher centrifugation is used to produce monosodium glutamate, salt, lysine and saccharin. [2]

Pusher centrifugation is also used in the plastic industry, contributing to products such as PVC, polyethylene and polypropylene, and a number of other resins.

Individual products

Advantages and limitations

Advantages

Limitations

Designs

The designs for pusher centrifuge are as follows:

Pushers come with eithermechanical and/or hydraulic drive units. Speed can vary.

Single-stage

Single-stage units can be cylindrical or cylindrical/conical with a single long basket and screen

Multi-stage

Multistage (two-, three-, or four- stage designs): cylindrical and cylindrical/conical

Three/four stage

  • Used for largest sizes with long baskets
  • Recommended for materials with high friction coefficients, low internal cake shear strength, or high compressibility, e.g., processing high rubber ABS
  • Lower capacity affects performance due to correspondingly thin cakes and short retention time

Cylindrical/conical

Feed distributor design: conical/cylindrical or plate

Process characteristics

The important parameters are screen area, acceleration level in the final drainage zone and cake thickness. Cake filtration affects residence time and volumetric throughput. Residence on the screen is controlled by the screen's length and diameter, cake thickness and the frequency and stroke length of the cake. [3]

Feed

Pushers utilise the cake layer to act as a filter, hence the feed normally contains high solid concentration containing fast draining, crystalline, granular or fibrous solids. The solid concentration ranges from 25-65 wt%. [2] The mean particle size suitable for pushers must be at least 150 μm. The capacity depends on the basket diameter and ranges from 1 ton/h to 120tons/h. [4]

Operations

The cake is under centrifugal force. It becomes drier as it progresses in the basket and is discharged from the pusher basket into the solid discharge housing (pusher centrifuge operation). The stroke length ranges from 30 to 80 mm and the stroke frequency is between 45 and 90strokes/min. [4]

The push efficiency is defined as the distance of the forward movement of the cake ring divided by the stroke length. The push efficiency is a function of the solid volumetric loading, which results in self-compensating control of varying rates. Up to 90% push efficiency is achievable depending on the cake properties. [4] dQ3ET42T

Filtration rate

The equation for the filtration rate, Q: [4]

(1)
(2)

Where and are viscosity and liquid density, respectively. is the angular speed, is the average cake permeability, which is related to equation (2), , and are the radius of the liquid surface, cake surface and filter medium adjacent to the perforated bowl respectively, is the combined resistance, is the specific resistance and is the solid density.

The numerator describes the pusher's driving force, which is due to the hydrostatic pressure difference across the wall and the liquid surface. The denominator describes the resistance due to the cake layer and the filter medium.

Process variables

Performance is a function of many parameters, including particle size, viscosity, solid concentration and cake quality. [2]

Particle size/porosity

To create the cake layer, the particle size has to be as large as practically possible. Larger particle size increases the porosity of the cake layer and allows feed liquid to pass through. Particle shape is equally important, because it determines the surface area per unit mass. As it decreases, less surface area is available to bind moisture, providing a drier cake. [2]

Viscosity

Filtration rate is a function of the viscosity of the feed fluid. From equation (1), the relationship of the filtration rate is inversely proportional to the viscosity. Increasing viscosity means adding resistance to the fluid flow, which complicates separation of the fluids from the slurry. Consequently, the throughput of the pusher is de-rated. [2] [4]

Solid concentration

In most cases the solids discharge capacity/hydraulic capacity is not the limiting factor. The usual limitation is the filtration rate. Therefore, more solids can be processed by increasing the feed slurry concentration.

Cake quality

The cake quality is determined by the purity and the amount of volatile matter.

Purity

Wash liquid is introduced on the cake in order to displace the mother liquor along with the impurities. [2] The cake wash ratio is normally between 0.1 and 0.3 kg wash/kg solids, which displace at least 95% of the feed fluid and impurities within the wash zone's normal residence time. [4]

Volatile matter

The amount of volatile matter present in the discharge is a function of the centrifugal force (G) and the residence time at that force. Separation increases with G and hence favours the filtration rate as illustrated in equation (3). [4]

where is the centrifugal force, is the angular speed, is the radius of the basket, and is the gravitational force.

By relating equation 3 to equation 1, the relationship of the centrifugal force is shown to be proportional to the filtration rate. As pushers often deal with fragile crystals, the movement of the pusher plate and acceleration in the feed funnel matter, because they can break some of the particles. [4] In addition to the movement plate, G can cause breakage and compaction, and volatile matter in the cake increases. The gentle movement of cake in low G, single stage, long basket designs results in low particle attrition. As more solids pass through, residence time decreases, which increases volatile matter in the discharge cake. [2]

Process design heuristics

The heuristics of pusher centrifuge design consider equipment size, operation sequence and recycle structure.

Design process

Overall approach: [4]

  • Define the problem
  • Outline process conditions
  • Make preliminary selections
  • Develop a test program
  • Test sample batches
  • Adjust process conditions as required
  • Consult equipment manufacturers
  • Make final selection and obtain quotes

Equipment sizing

Variables considered in sizing equipment:

Equipment selection

Equipment selection is based upon test results, references from similar processes and experience and considered in terms of:

Optimising performance

For conical and cylindrical designs and assembly, the cone slant angle should not exceed sliding friction cake angle. Otherwise it would result in high vibration and poor performance. [4]

In order to optimise capacity and performance, it is desirable to pre-concentrate the feed slurry as much as possible. Some designs have a short conical section at the feed end for thickening within the unit, but generally it is preferable to thicken before entering the centrifuge with gravity settlers, hydrocyclones or inclined screens, producing a higher concentration of solids.

The volumetric throughput for multistage designs can be increased by increasing the forced cake height while still retaining acceptable push efficiency.

Design selection

Selection of designs is usually done by scale-up from lab tests. Test data analysis should be rationalised in preparation for equipment scale-up. Computer-aided design software can assist in design and scale-up. Pilot-testing and rollout then follows. [5]

Waste

Production

The majority of liquid contained within the mixture is drawn out at an early stage, in the feed zone of the slot screen. It is discharged into the filtrate housing. After formation of solid cakes, the main by-product produced is water, which may be used in all sorts of industrial usage. Filtration cakes are washed using nozzles or waste baskets.

Post-treatment

Post-treatment processes are a function of the specifics of the waste stream and are diverse. [6]

Later designs

Design advances have enhanced performance and broaden the application range. These include additional stages, push hesitation, horizontal split process housing, integrated hydraulics, seals, pre-drained funnels and an integrated thickening function.

Stages

B&P Process Equipment and Systems (B&P) makes the largest single-stage pusher centrifuge, which they claimed to be superior to multistage designs. [7] They claimed that additional impurities enter the liquid housing due to additional particles tumbling in each stage. The problem can be overcome by using a shorter inner basket with smaller diameter between the pusher plates and the basket and enabling pusher movement to take place between the pusher plate and the basket as well as between the inner basket and the outer basket. Compared to single-stage pushers that have pusher movement only between pusher plate and basket, multistage centrifuges have the advantages that the cake height is reduced, filtration resistance is lower and lesser force is required.

Push hesitation

Push hesitation holds the pusher plate in the back stroke, allowing the cake to build on itself. The cake acts as the filtering media that can even capture finer solids. This reduces the loss of solids passing through the wedge slots. Although this modification reduces capacity, it has helped improved the solid capture efficiency and make pusher centrifuges applicable to smaller particles. [2]

Horizontal split process housing

This allows the removal of the rotating assembly without disassembling the basket and pusher centrifuge from the shafting assembly.

Integral hydraulics

An automated mechanism allows the system to operate independently.

Seals

Shaft seals eliminate the possibility of cross-contamination between the hydraulic and process ends. Options include a centrifugal liquid ring seal and a non-contacting inert gas purged labyrinth seal that eliminates leakage.

Pre-drained funnel

The pre-drained funnel removes a portion of the feed fluid through a puncture surface. This feature helps to concentrate the feed, which is especially important for drainage-limited applications. However the funnel cannot be back-washed therefore this feature is only available for crystals that tend not to back-crystallise.

Integrated thickening

Integrating the thickening function enables the pusher to be loaded with mixture with as little as 30-35% wt of solid. It also reduces process costs of solid-liquid separation by as much as 20%. [8]

Related Research Articles

<span class="mw-page-title-main">Filtration</span> Process that separates solids from fluids

Filtration is a physical separation process that separates solid matter and fluid from a mixture using a filter medium that has a complex structure through which only the fluid can pass. Solid particles that cannot pass through the filter medium are described as oversize and the fluid that passes through is called the filtrate. Oversize particles may form a filter cake on top of the filter and may also block the filter lattice, preventing the fluid phase from crossing the filter, known as blinding. The size of the largest particles that can successfully pass through a filter is called the effective pore size of that filter. The separation of solid and fluid is imperfect; solids will be contaminated with some fluid and filtrate will contain fine particles. Filtration occurs both in nature and in engineered systems; there are biological, geological, and industrial forms.

<span class="mw-page-title-main">Centrifuge</span> Device using centrifugal force to separate fluids

A centrifuge is a device that uses centrifugal force to subject a specimen to a specified constant force, for example to separate various components of a fluid. This is achieved by spinning the fluid at high speed within a container, thereby separating fluids of different densities or liquids from solids. It works by causing denser substances and particles to move outward in the radial direction. At the same time, objects that are less dense are displaced and moved to the centre. In a laboratory centrifuge that uses sample tubes, the radial acceleration causes denser particles to settle to the bottom of the tube, while low-density substances rise to the top. A centrifuge can be a very effective filter that separates contaminants from the main body of fluid.

<span class="mw-page-title-main">Centrifugation</span> Mechanical process

Centrifugation is a mechanical process which involves the use of the centrifugal force to separate particles from a solution according to their size, shape, density, medium viscosity and rotor speed. The denser components of the mixture migrate away from the axis of the centrifuge, while the less dense components of the mixture migrate towards the axis. Chemists and biologists may increase the effective gravitational force of the test tube so that the precipitate (pellet) will travel quickly and fully to the bottom of the tube. The remaining liquid that lies above the precipitate is called a supernatant or supernate.

Microfiltration is a type of physical filtration process where a contaminated fluid is passed through a special pore-sized membrane filter to separate microorganisms and suspended particles from process liquid. It is commonly used in conjunction with various other separation processes such as ultrafiltration and reverse osmosis to provide a product stream which is free of undesired contaminants.

<span class="mw-page-title-main">Dust collector</span> Industrial machine

A dust collector is a system used to enhance the quality of air released from industrial and commercial processes by collecting dust and other impurities from air or gas. Designed to handle high-volume dust loads, a dust collector system consists of a blower, dust filter, a filter-cleaning system, and a dust receptacle or dust removal system. It is distinguished from air purifiers, which use disposable filters to remove dust.

<span class="mw-page-title-main">Fractional crystallization (chemistry)</span> Method for refining substances based on differences in their solubility

In chemistry, fractional crystallization is a stage-wise separation technique that relies on the liquid-solid phase change. It fractionates via differences in crystallization temperature and enables the purification of multi-component mixtures, as long as none of the constituents can act as solvents to the others. Due to the high selectivity of the solid – liquid equilibrium, very high purities can be achieved for the selected component.

<span class="mw-page-title-main">Rotary vacuum-drum filter</span> Drum used to filter a slurry

A Rotary Vacuum Filter Drum consists of a cylindrical filter membrane that is partly sub-merged in a slurry to be filtered. The inside of the drum is held lower than the ambient pressure. As the drum rotates through the slurry, the liquid is sucked through the membrane, leaving solids to cake on the membrane surface while the drum is submerged. A knife or blade is positioned to scrape the product from the surface.

<span class="mw-page-title-main">Cross-flow filtration</span>

In chemical engineering, biochemical engineering and protein purification, cross-flow filtration is a type of filtration. Cross-flow filtration is different from dead-end filtration in which the feed is passed through a membrane or bed, the solids being trapped in the filter and the filtrate being released at the other end. Cross-flow filtration gets its name because the majority of the feed flow travels tangentially across the surface of the filter, rather than into the filter. The principal advantage of this is that the filter cake is substantially washed away during the filtration process, increasing the length of time that a filter unit can be operational. It can be a continuous process, unlike batch-wise dead-end filtration.

<span class="mw-page-title-main">Filter press</span>

An industrial filter press is a tool used in separation processes, specifically to separate solids and liquids. The machine stacks many filter elements and allows the filter to be easily opened to remove the filtered solids, and allows easy cleaning or replacement of the filter media.

A vacuum ceramic filter is designed to separate liquids from solids for dewatering of ore concentrates purposes. The device consists of a rotator, slurry tank, ceramic filter plate, distributor, discharge scraper, cleaning device, frame, agitating device, pipe system, vacuum system, automatic acid dosing system, automatic lubricating system, valve and discharge chute. The operation and construction principle of vacuum ceramic filter resemble those of a conventional disc filter, but the filter medium is replaced by a finely porous ceramic disc. The disc material is inert, has a long operational life and is resistant to almost all chemicals. Performance can be optimized by taking into account all those factors which affect the overall efficiency of the separation process. Some of the variables affecting the performance of a vacuum ceramic filter include the solid concentration, speed rotation of the disc, slurry level in the feed basin, temperature of the feed slurry, and the pressure during dewatering stages and filter cake formation.

<span class="mw-page-title-main">Belt filter</span>

The belt filter is an industrial machine, used for solid/liquid separation processes, particularly the dewatering of sludges in the chemical industry, mining and water treatment. Belt filter presses are also used in the production of apple juice, cider and winemaking. The process of filtration is primarily obtained by passing a pair of filtering cloths and belts through a system of rollers. The system takes a sludge or slurry as a feed, and separates it into a filtrate and a solid cake.

<span class="mw-page-title-main">Centrifugal extractor</span>

A centrifugal extractor—also known as a centrifugal contactor or annular centrifugal contactor—uses the rotation of the rotor inside a centrifuge to mix two immiscible liquids outside the rotor and to separate the liquids in the field of gravity inside the rotor. This way, a centrifugal extractor generates a continuous extraction from one liquid phase into another liquid phase.

The peeler centrifuge is a device that performs by rotating filtration basket in an axis. A centrifuge follows on the principle of centrifugal force to separate solids from liquids by density difference. High rotation speed provides high centrifugal force that allows the suspended solid in feed to settle on the inner surface of basket. There are three kinds of centrifuge, horizontal, vertical peeler centrifuge and siphon peeler centrifuge. These classes of instrument apply to various areas such as fertilisers, pharmaceutical, plastics and food including artificial sweetener and modified starch.

A centrifuge is a device that employs a high rotational speed to separate components of different densities. This becomes relevant in the majority of industrial jobs where solids, liquids and gases are merged into a single mixture and the separation of these different phases is necessary. A decanter centrifuge separates continuously solid materials from liquids in the slurry, and therefore plays an important role in the wastewater treatment, chemical, oil, and food processing industries. There are several factors that affect the performance of a decanter centrifuge, and some design heuristics are to be followed which are dependent upon given applications.

<span class="mw-page-title-main">Trommel screen</span> Machine separating materials

A trommel screen, also known as a rotary screen, is a mechanical screening machine used to separate materials, mainly in the mineral and solid-waste processing industries. It consists of a perforated cylindrical drum that is normally elevated at an angle at the feed end. Physical size separation is achieved as the feed material spirals down the rotating drum, where the undersized material smaller than the screen apertures passes through the screen, while the oversized material exits at the other end of the drum.

<span class="mw-page-title-main">Solid bowl centrifuge</span>

A solid bowl centrifuge is a type of centrifuge that uses the principle of sedimentation. A centrifuge is used to separate a mixture that consists of two substances with different densities by using the centrifugal force resulting from continuous rotation. It is normally used to separate solid-liquid, liquid-liquid, and solid-solid mixtures. Solid bowl centrifuges are widely used in various industrial applications, such as wastewater treatment, coal manufacturing, and polymer manufacturing. One advantage of solid bowl centrifuges for industrial uses is the simplicity of installation compared to other types of centrifuge. There are three design types of solid bowl centrifuge, which are conical, cylindrical, and conical-cylindrical.

Gyratory equipment, used in mechanical screening and sieving is based on a circular motion of the machine. Unlike other methods, gyratory screen operates in a gentler manner and is more suited to handle fragile things, enabling it to produce finer products. This method is applicable for both wet and dry screening.

A conical plate centrifuge is a type of centrifuge that has a series of conical discs which provides a parallel configuration of centrifugation spaces.

Screen/Scroll centrifuge is a filtering or screen centrifuge which is also known as worm screen or conveyor discharge centrifuge. This centrifuge was first introduced in the midst of 19th century. After developing new technologies over the decades, it is now one of the widely used processes in many industries for the separation of crystalline, granular or fibrous materials from a solid-liquid mixture. Also, this process is considered to dry the solid material. This process has been some of the most frequently seen within, especially, coal preparation industry. Moreover, it can be found in other industries such as chemical, environmental, food and other mining fields.

An oil water separator (OWS) is a piece of equipment used to separate oil and water mixtures into their separate components. There are many different types of oil-water separator. Each has different oil separation capability and are used in different industries. Oil water separators are designed and selected after consideration of oil separation performance parameters and life cycle cost considerations. "Oil" can be taken to mean mineral, vegetable and animal oils, and the many different hydrocarbons.

References

  1. Technologies 2008
  2. 1 2 3 4 5 6 7 8 Dubal 2008
  3. Schmidt 2010 , pp. 34–38
  4. 1 2 3 4 5 6 7 8 9 10 ( Green & Perry 2008 , pp. 1056–1065)
  5. ( Wakeman & Tarleton 1993 , pp. 530–543)
  6. Rotofilt
  7. Filtration & Separation 1997
  8. Filtration & Separation 2003 , pp. 38–39

Bibliography