QFF

Last updated • 1 min readFrom Wikipedia, The Free Encyclopedia

QFF is an Aeronautical Code Q code. It is the MSL pressure derived from local meteorological station conditions in accordance with meteorological practice. [1] [2] This is the altimeter setting that is intended to produce correct altitude indication (i.e., no error) on an altimeter at the actual sea level elevation, while QNH is intended to have no error at the station elevation (or, especially when applied within a region with a relatively small range of surface elevations, at the altitudes close to the surface elevation within the region). [3]

Meteorological practice of calculating QFF differs between meteorological organizations around the world. Some examples:

QFF is derived from the barometric pressure at the station location by calculating the weight of an imaginary air column, extending from the location to sea level, assuming the temperature and relative humidity at the location are the long term monthly mean, the temperature lapse rate is according to ISA and the relative humidity lapse rate is zero.
QFF is the location value plotted on surface synoptic chart and is closer to reality than QNH, though it is only indirectly used in aviation.[ citation needed ]
The derivation assumes that an isothermal layer at the station temperature extends to the sea level.[ citation needed ] This is the barometric pressure at the surface reduced to MSL using the observed temperature at the surface (which assumes an isothermal layer from MSL to that surface). [4] QFF accounts for the effect that temperature has on the pressure lapse rate and therefore the resultant calculated pressure.
The range of QFF so far recorded[ where? ], low pressure to high pressure, is from 856 to 1083 hPa.[ citation needed ]

See also

Related Research Articles

Atmospheric pressure, also known as air pressure or barometric pressure, is the pressure within the atmosphere of Earth. The standard atmosphere is a unit of pressure defined as 101,325 Pa (1,013.25 hPa), which is equivalent to 1,013.25 millibars, 760 mm Hg, 29.9212 inches Hg, or 14.696 psi. The atm unit is roughly equivalent to the mean sea-level atmospheric pressure on Earth; that is, the Earth's atmospheric pressure at sea level is approximately 1 atm.

<span class="mw-page-title-main">Barometer</span> Scientific instrument used to measure atmospheric pressure

A barometer is a scientific instrument that is used to measure air pressure in a certain environment. Pressure tendency can forecast short term changes in the weather. Many measurements of air pressure are used within surface weather analysis to help find surface troughs, pressure systems and frontal boundaries.

<span class="mw-page-title-main">Dew point</span> Temperature at which air becomes saturated with water vapour during a cooling process

The dew point of a given body of air is the temperature to which it must be cooled to become saturated with water vapor. This temperature depends on the pressure and water content of the air. When the air is cooled below the dew point, its moisture capacity is reduced and airborne water vapor will condense to form liquid water known as dew. When this occurs through the air's contact with a colder surface, dew will form on that surface.

<span class="mw-page-title-main">Altitude</span> Height in relation to a specified reference point

Altitude is a distance measurement, usually in the vertical or "up" direction, between a reference datum and a point or object. The exact definition and reference datum varies according to the context. Although the term altitude is commonly used to mean the height above sea level of a location, in geography the term elevation is often preferred for this usage.

<span class="mw-page-title-main">Sea level</span> Geographical reference point from which various heights are measured

Mean sea level is an average surface level of one or more among Earth's coastal bodies of water from which heights such as elevation may be measured. The global MSL is a type of vertical datum – a standardised geodetic datum – that is used, for example, as a chart datum in cartography and marine navigation, or, in aviation, as the standard sea level at which atmospheric pressure is measured to calibrate altitude and, consequently, aircraft flight levels. A common and relatively straightforward mean sea-level standard is instead a long-term average of tide gauge readings at a particular reference location.

Geopotential height or geopotential altitude is a vertical coordinate referenced to Earth's mean sea level that represents the work involved in lifting one unit of mass over one unit of length through a hypothetical space in which the acceleration of gravity is assumed constant. In SI units, a geopotential height difference of one meter implies the vertical transport of a parcel of one kilogram; adopting the standard gravity value, it corresponds to a constant work or potential energy difference of 9.80665 joules.

<span class="mw-page-title-main">Lapse rate</span> Vertical rate of change of temperature in atmosphere

The lapse rate is the rate at which an atmospheric variable, normally temperature in Earth's atmosphere, falls with altitude. Lapse rate arises from the word lapse. In dry air, the adiabatic lapse rate is 9.8 °C/km. The saturated adiabatic lapse rate (SALR), or moist adiabatic lapse rate (MALR), is the decrease in temperature of a parcel of water-saturated air that rises in the atmosphere. It varies with the temperature and pressure of the parcel and is often in the range 3.6 to 9.2 °C/km, as obtained from the International Civil Aviation Organization (ICAO). The environmental lapse rate is the decrease in temperature of air with altitude for a specific time and place. It can be highly variable between circumstances.

<span class="mw-page-title-main">Flight level</span> Measure in aviation

In aviation, a flight level (FL) is an aircraft's altitude as determined by a pressure altimeter using the International Standard Atmosphere. It is expressed in hundreds of feet or metres. The altimeter setting used is the ISA sea level pressure of 1013 hPa or 29.92 inHg. The actual surface pressure will vary from this at different locations and times. Therefore, by using a standard pressure setting, every aircraft has the same altimeter setting, and vertical clearance can be maintained during cruise flight.

Given an atmospheric pressure measurement, the pressure altitude is the imputed altitude that the International Standard Atmosphere (ISA) model predicts to have the same pressure as the observed value.

<span class="mw-page-title-main">Weather map</span> Table of weather elements

A weather map, also known as synoptic weather chart, displays various meteorological features across a particular area at a particular point in time and has various symbols which all have specific meanings. Such maps have been in use since the mid-19th century and are used for research and weather forecasting purposes. Maps using isotherms show temperature gradients, which can help locate weather fronts. Isotach maps, analyzing lines of equal wind speed, on a constant pressure surface of 300 or 250 hPa show where the jet stream is located. Use of constant pressure charts at the 700 and 500 hPa level can indicate tropical cyclone motion. Two-dimensional streamlines based on wind speeds at various levels show areas of convergence and divergence in the wind field, which are helpful in determining the location of features within the wind pattern. A popular type of surface weather map is the surface weather analysis, which plots isobars to depict areas of high pressure and low pressure. Cloud codes are translated into symbols and plotted on these maps along with other meteorological data that are included in synoptic reports sent by professionally trained observers.

<span class="mw-page-title-main">METAR</span> Format for weather reports used in aviation

METAR is a format for reporting weather information. A METAR weather report is predominantly used by aircraft pilots, and by meteorologists, who use aggregated METAR information to assist in weather forecasting.

<span class="mw-page-title-main">International Standard Atmosphere</span> Atmospheric model

The International Standard Atmosphere (ISA) is a static atmospheric model of how the pressure, temperature, density, and viscosity of the Earth's atmosphere change over a wide range of altitudes or elevations. It has been established to provide a common reference for temperature and pressure and consists of tables of values at various altitudes, plus some formulas by which those values were derived. The International Organization for Standardization (ISO) publishes the ISA as an international standard, ISO 2533:1975. Other standards organizations, such as the International Civil Aviation Organization (ICAO) and the United States Government, publish extensions or subsets of the same atmospheric model under their own standards-making authority.

The barometric formula is a formula used to model how the pressure of the air changes with altitude.

<span class="mw-page-title-main">Density altitude</span> Altitude relative to standard atmospheric conditions

The density altitude is the altitude relative to standard atmospheric conditions at which the air density would be equal to the indicated air density at the place of observation. In other words, the density altitude is the air density given as a height above mean sea level. The density altitude can also be considered to be the pressure altitude adjusted for a non-standard temperature.

In aviation, atmospheric sciences and broadcasting, a height above ground level is a height measured with respect to the underlying ground surface. This is as opposed to height above mean sea level, height above ellipsoid, or height above average terrain. In other words, these expressions indicate where the "zero level" or "reference altitude" – the vertical datum – is located.

<span class="mw-page-title-main">Thermodynamic diagrams</span> Diagram showing the thermodynamic states of a material

Thermodynamic diagrams are diagrams used to represent the thermodynamic states of a material and the consequences of manipulating this material. For instance, a temperature–entropy diagram may be used to demonstrate the behavior of a fluid as it is changed by a compressor.

<span class="mw-page-title-main">Pressure altimeter</span>

Altitude can be determined based on the measurement of atmospheric pressure. The greater the altitude, the lower the pressure. When a barometer is supplied with a nonlinear calibration so as to indicate altitude, the instrument is a type of altimeter called a pressure altimeter or barometric altimeter. A pressure altimeter is the altimeter found in most aircraft, and skydivers use wrist-mounted versions for similar purposes. Hikers and mountain climbers use wrist-mounted or hand-held altimeters, in addition to other navigational tools such as a map, magnetic compass, or GPS receiver.

<span class="mw-page-title-main">Automated airport weather station</span> Automated sensor suites

Airport weather stations are automated sensor suites which are designed to serve aviation and meteorological operations, weather forecasting and climatology. Automated airport weather stations have become part of the backbone of weather observing in the United States and Canada and are becoming increasingly more prevalent worldwide due to their efficiency and cost-savings.

<span class="mw-page-title-main">Surface weather observation</span> Fundamental data used for weather forecasts

Surface weather observations are the fundamental data used for safety as well as climatological reasons to forecast weather and issue warnings worldwide. They can be taken manually, by a weather observer, by computer through the use of automated weather stations, or in a hybrid scheme using weather observers to augment the otherwise automated weather station. The ICAO defines the International Standard Atmosphere (ISA), which is the model of the standard variation of pressure, temperature, density, and viscosity with altitude in the Earth's atmosphere, and is used to reduce a station pressure to sea level pressure. Airport observations can be transmitted worldwide through the use of the METAR observing code. Personal weather stations taking automated observations can transmit their data to the United States mesonet through the Citizen Weather Observer Program (CWOP), the UK Met Office through their Weather Observations Website (WOW), or internationally through the Weather Underground Internet site. A thirty-year average of a location's weather observations is traditionally used to determine the station's climate. In the US a network of Cooperative Observers make a daily record of summary weather and sometimes water level information.

Altimeter setting is the value of the atmospheric pressure used to adjust the scale of a pressure altimeter so that it indicates the height of an aircraft above a known reference surface. This reference can be the mean sea level pressure (QNH), the pressure at a nearby surface airport (QFE), or the "standard pressure level" of 1,013.25 hectopascals which gives pressure altitude and is used to maintain one of the standard flight levels.

References

  1. Kloth, Ralf D. (1994-12-31). "List of Q-codes". Archived from the original on 2019-03-24. Retrieved 2014-05-16.
  2. "Communications Instructions Operating Signals" (PDF). Combined Communications-Electronics Board. April 2006. Archived from the original (PDF) on September 6, 2012. Retrieved 2014-05-16.
  3. "QFF versus QNH". atpforum.eu. Archived from the original on 17 May 2014. Retrieved 2014-05-16.
  4. "International Standard Atmosphere (ISA) and Pressure Settings". Archived from the original on 2014-03-03. Retrieved 2014-05-16.