Quantum flux parametron

Last updated
A typical QFP circuit diagram Qfp.svg
A typical QFP circuit diagram

A Quantum Flux Parametron (QFP) is a digital logic implementation technology based on superconducting Josephson junctions. [1] QFP's were invented by Eiichi Goto at the University of Tokyo as an improvement over his earlier parametron based digital logic technology, which did not use superconductivity effects or Josephson junctions. The Josephson junctions on QFP integrated circuits to improve speed and energy efficiency enormously over the parametrons.

In some applications, the complexity of the cryogenic cooling system required is negligible compared to the potential speed gains. While his design makes use of quantum principles, it is not a quantum computer technology, gaining speed only through higher clock speeds.

Apart from the speed advantage over traditional CMOS integrated circuit design is that parametrons can be operated with zero energy loss (no local increase in entropy), making reversible computing possible. Low energy use and heat generation is critical in supercomputer design, where thermal load per unit volume has become one of the main limiting factors.

A related technology is the Rapid Single Flux Quantum digital logic.

Related Research Articles

<span class="mw-page-title-main">Computing</span> Activity involving calculations or computing machinery

Computing is any goal-oriented activity requiring, benefiting from, or creating computing machinery. It includes the study and experimentation of algorithmic processes, and development of both hardware and software. Computing has scientific, engineering, mathematical, technological and social aspects. Major computing disciplines include computer engineering, computer science, cybersecurity, data science, information systems, information technology, digital art and software engineering.

<span class="mw-page-title-main">Digital electronics</span> Electronic circuits that utilize digital signals

Digital electronics is a field of electronics involving the study of digital signals and the engineering of devices that use or produce them. This is in contrast to analog electronics and analog signals.

<span class="mw-page-title-main">SQUID</span> Type of magnetometer

A SQUID is a very sensitive magnetometer used to measure extremely weak magnetic fields, based on superconducting loops containing Josephson junctions.

<span class="mw-page-title-main">Cryotron</span>

The cryotron is a switch that operates using superconductivity. The cryotron works on the principle that magnetic fields destroy superconductivity. This simple device consists of two superconducting wires with different critical temperature (Tc). The cryotron was invented by Dudley Allen Buck of the Massachusetts Institute of Technology Lincoln Laboratory.

<span class="mw-page-title-main">Josephson effect</span> Quantum physical phenomenon

In physics, the Josephson effect is a phenomenon that occurs when two superconductors are placed in proximity, with some barrier or restriction between them. It is an example of a macroscopic quantum phenomenon, where the effects of quantum mechanics are observable at ordinary, rather than atomic, scale. The Josephson effect has many practical applications because it exhibits a precise relationship between different physical measures, such as voltage and frequency, facilitating highly accurate measurements.

In electronics, rapid single flux quantum (RSFQ) is a digital electronic device that uses superconducting devices, namely Josephson junctions, to process digital signals. In RSFQ logic, information is stored in the form of magnetic flux quanta and transferred in the form of Single Flux Quantum (SFQ) voltage pulses. RSFQ is one family of superconducting or SFQ logic. Others include Reciprocal Quantum Logic (RQL), ERSFQ – energy-efficient RSFQ version that does not use bias resistors, etc. Josephson junctions are the active elements for RSFQ electronics, just as transistors are the active elements for semiconductor electronics. RSFQ is a classical digital, not quantum computing, technology.

Reversible computing is any model of computation where the computational process, to some extent, is time-reversible. In a model of computation that uses deterministic transitions from one state of the abstract machine to another, a necessary condition for reversibility is that the relation of the mapping from states to their successors must be one-to-one. Reversible computing is a form of unconventional computing.

Superconducting quantum computing is a branch of solid state quantum computing that implements superconducting electronic circuits using superconducting qubits as artificial atoms, or quantum dots. For superconducting qubits, the two logic states are the ground state and the excited state, denoted respectively. Research in superconducting quantum computing is conducted by companies such as Google, IBM, IMEC, BBN Technologies, Rigetti, and Intel. Many recently developed QPUs utilize superconducting architecture.

Bit slicing is a technique for constructing a processor from modules of processors of smaller bit width, for the purpose of increasing the word length; in theory to make an arbitrary n-bit central processing unit (CPU). Each of these component modules processes one bit field or "slice" of an operand. The grouped processing components would then have the capability to process the chosen full word-length of a given software design.

Unconventional computing is computing by any of a wide range of new or unusual methods. It is also known as alternative computing.

<span class="mw-page-title-main">Flux qubit</span> Superconducting qubit implementation

In quantum computing, more specifically in superconducting quantum computing, flux qubits are micrometer sized loops of superconducting metal that is interrupted by a number of Josephson junctions. These devices function as quantum bits. The flux qubit was first proposed by Terry P. Orlando et al. at MIT in 1999 and fabricated shortly thereafter. During fabrication, the Josephson junction parameters are engineered so that a persistent current will flow continuously when an external magnetic flux is applied. Only an integer number of flux quanta are allowed to penetrate the superconducting ring, resulting in clockwise or counter-clockwise mesoscopic supercurrents in the loop to compensate a non-integer external flux bias. When the applied flux through the loop area is close to a half integer number of flux quanta, the two lowest energy eigenstates of the loop will be a quantum superposition of the clockwise and counter-clockwise currents. The two lowest energy eigenstates differ only by the relative quantum phase between the composing current-direction states. Higher energy eigenstates correspond to much larger (macroscopic) persistent currents, that induce an additional flux quantum to the qubit loop, thus are well separated energetically from the lowest two eigenstates. This separation, known as the "qubit non linearity" criteria, allows operations with the two lowest eigenstates only, effectively creating a two level system. Usually, the two lowest eigenstates will serve as the computational basis for the logical qubit.

<span class="mw-page-title-main">Scanning SQUID microscopy</span> Method of imaging magnetic fields at microscopic scales

In condensed matter physics, scanning SQUID microscopy is a technique where a superconducting quantum interference device (SQUID) is used to image surface magnetic field strength with micrometre-scale resolution. A tiny SQUID is mounted onto a tip which is then rastered near the surface of the sample to be measured. As the SQUID is the most sensitive detector of magnetic fields available and can be constructed at submicrometre widths via lithography, the scanning SQUID microscope allows magnetic fields to be measured with unparalleled resolution and sensitivity. The first scanning SQUID microscope was built in 1992 by Black et al. Since then the technique has been used to confirm unconventional superconductivity in several high-temperature superconductors including YBCO and BSCCO compounds.

In quantum computing, and more specifically in superconducting quantum computing, the phase qubit is a superconducting device based on the superconductor–insulator–superconductor (SIS) Josephson junction, designed to operate as a quantum bit, or qubit.

The superconducting tunnel junction (STJ) — also known as a superconductor–insulator–superconductor tunnel junction (SIS) — is an electronic device consisting of two superconductors separated by a very thin layer of insulating material. Current passes through the junction via the process of quantum tunneling. The STJ is a type of Josephson junction, though not all the properties of the STJ are described by the Josephson effect.

Eiichi Goto was a Japanese computer scientist, the builder of one of the first general-purpose computers in Japan.

Superconducting logic refers to a class of logic circuits or logic gates that use the unique properties of superconductors, including zero-resistance wires, ultrafast Josephson junction switches, and quantization of magnetic flux (fluxoid). As of 2023, superconducting computing is a form of cryogenic computing, as superconductive electronic circuits require cooling to cryogenic temperatures for operation, typically below 10 kelvin. Often superconducting computing is applied to quantum computing, with an important application known as superconducting quantum computing.

<span class="mw-page-title-main">Beyond CMOS</span> Possible future digital logic technologies

Beyond CMOS refers to the possible future digital logic technologies beyond the CMOS scaling limits which limits device density and speeds due to heating effects.

<span class="mw-page-title-main">Josephson junction count</span> Number of Josephson junctions on a superconducting integrated circuit chip

The Josephson junction count is the number of Josephson junctions on a superconducting integrated circuit chip. Josephson junctions are active circuit elements in superconducting circuits. The Josephson junction count is a measure of circuit or device complexity, similar to the transistor count used for semiconductor integrated circuits.

<span class="mw-page-title-main">MOSFET applications</span> BILLIE JO BLAKE © 1969 SOURCE CODE

The metal–oxide–semiconductor field-effect transistor, also known as the metal–oxide–silicon transistor, is a type of insulated-gate field-effect transistor (IGFET) that is fabricated by the controlled oxidation of a semiconductor, typically silicon. The voltage of the covered gate determines the electrical conductivity of the device; this ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals.

Oleg A. Mukhanov is a Russian electrical engineer. He is an IEEE fellow who has focused on superconductivity. He is the co-inventor of SFQ digital technology. He authored and co-authored over 200 scientific papers and holds 24 patents. He is American and resides in the United States.

References

  1. Hosoya, M.; Hioe, W.; Casas, J.; Kamikawai, R.; Harada, Y.; Wada, Y.; Nakane, H.; Suda, R.; Goto, E. (June 1991). "Quantum flux parametron: a single quantum flux device for Josephson supercomputer". IEEE Transactions on Applied Superconductivity. 1 (2): 77–89. Bibcode:1991ITAS....1...77H. doi:10.1109/77.84613. S2CID   6368165.