Quasi-arithmetic mean

Last updated

In mathematics and statistics, the quasi-arithmetic mean or generalised f-mean or Kolmogorov-Nagumo-de Finetti mean [1] is one generalisation of the more familiar means such as the arithmetic mean and the geometric mean, using a function . It is also called Kolmogorov mean after Soviet mathematician Andrey Kolmogorov. It is a broader generalization than the regular generalized mean.

Contents

Definition

If f is a function which maps an interval of the real line to the real numbers, and is both continuous and injective, the f-mean of numbers is defined as , which can also be written

We require f to be injective in order for the inverse function to exist. Since is defined over an interval, lies within the domain of .

Since f is injective and continuous, it follows that f is a strictly monotonic function, and therefore that the f-mean is neither larger than the largest number of the tuple nor smaller than the smallest number in .

Examples

Properties

The following properties hold for for any single function :

Symmetry: The value of is unchanged if its arguments are permuted.

Idempotency: for all x, .

Monotonicity: is monotonic in each of its arguments (since is monotonic).

Continuity: is continuous in each of its arguments (since is continuous).

Replacement: Subsets of elements can be averaged a priori, without altering the mean, given that the multiplicity of elements is maintained. With it holds:

Partitioning: The computation of the mean can be split into computations of equal sized sub-blocks:

Self-distributivity: For any quasi-arithmetic mean of two variables: .

Mediality: For any quasi-arithmetic mean of two variables:.

Balancing: For any quasi-arithmetic mean of two variables:.

Central limit theorem  : Under regularity conditions, for a sufficiently large sample, is approximately normal. [2] A similar result is available for Bajraktarević means, which are generalizations of quasi-arithmetic means. [3]

Scale-invariance: The quasi-arithmetic mean is invariant with respect to offsets and scaling of : .

Characterization

There are several different sets of properties that characterize the quasi-arithmetic mean (i.e., each function that satisfies these properties is an f-mean for some function f).

Homogeneity

Means are usually homogeneous, but for most functions , the f-mean is not. Indeed, the only homogeneous quasi-arithmetic means are the power means (including the geometric mean); see HardyLittlewoodPólya, page 68.

The homogeneity property can be achieved by normalizing the input values by some (homogeneous) mean .

However this modification may violate monotonicity and the partitioning property of the mean.

See also

Related Research Articles

<span class="mw-page-title-main">Arithmetic–geometric mean</span> Mathematical function of two positive real arguments

In mathematics, the arithmetic–geometric mean of two positive real numbers x and y is the mutual limit of a sequence of arithmetic means and a sequence of geometric means:

<span class="mw-page-title-main">Exponential function</span> Mathematical function, denoted exp(x) or e^x

The exponential function is a mathematical function denoted by or . Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the notion of exponentiation, but modern definitions allow it to be rigorously extended to all real arguments, including irrational numbers. Its ubiquitous occurrence in pure and applied mathematics led mathematician Walter Rudin to opine that the exponential function is "the most important function in mathematics".

<span class="mw-page-title-main">Geometric mean</span> N-th root of the product of n numbers

In mathematics, the geometric mean is a mean or average which indicates a central tendency of a set of numbers by using the product of their values. The geometric mean is defined as the nth root of the product of n numbers, i.e., for a set of numbers a1, a2, ..., an, the geometric mean is defined as

<span class="mw-page-title-main">Generalized mean</span> N-th root of the arithmetic mean of the given numbers raised to the power n

In mathematics, generalized means are a family of functions for aggregating sets of numbers. These include as special cases the Pythagorean means.

<span class="mw-page-title-main">Normal distribution</span> Probability distribution

In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is

<span class="mw-page-title-main">Natural logarithm</span> Logarithm to the base of the mathematical constant e

The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718281828459. The natural logarithm of x is generally written as ln x, logex, or sometimes, if the base e is implicit, simply log x. Parentheses are sometimes added for clarity, giving ln(x), loge(x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.

In probability theory, the central limit theorem (CLT) establishes that, in many situations, for identically distributed independent samples, the standardized sample mean tends towards the standard normal distribution even if the original variables themselves are not normally distributed.

<span class="mw-page-title-main">Exponential distribution</span> Probability distribution

In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the time between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate. It is a particular case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point processes it is found in various other contexts.

<span class="mw-page-title-main">Inequality (mathematics)</span> Mathematical relation expressed with < or ≤

In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. It is used most often to compare two numbers on the number line by their size. There are several different notations used to represent different kinds of inequalities:

<span class="mw-page-title-main">Exponentiation</span> Mathematical operation

Exponentiation is a mathematical operation, written as bn, involving two numbers, the baseb and the exponent or powern, and pronounced as "b (raised) to the n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases:

<span class="mw-page-title-main">Log-normal distribution</span> Probability distribution

In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution. Equivalently, if Y has a normal distribution, then the exponential function of Y, X = exp(Y), has a log-normal distribution. A random variable which is log-normally distributed takes only positive real values. It is a convenient and useful model for measurements in exact and engineering sciences, as well as medicine, economics and other topics (e.g., energies, concentrations, lengths, prices of financial instruments, and other metrics).

In probability and statistics, an exponential family is a parametric set of probability distributions of a certain form, specified below. This special form is chosen for mathematical convenience, including the enabling of the user to calculate expectations, covariances using differentiation based on some useful algebraic properties, as well as for generality, as exponential families are in a sense very natural sets of distributions to consider. The term exponential class is sometimes used in place of "exponential family", or the older term Koopman–Darmois family. The terms "distribution" and "family" are often used loosely: specifically, an exponential family is a set of distributions, where the specific distribution varies with the parameter; however, a parametric family of distributions is often referred to as "a distribution", and the set of all exponential families is sometimes loosely referred to as "the" exponential family. They are distinct because they possess a variety of desirable properties, most importantly the existence of a sufficient statistic.

<span class="mw-page-title-main">Tetration</span> Repeated exponentiation

In mathematics, tetration is an operation based on iterated, or repeated, exponentiation. There is no standard notation for tetration, though and the left-exponent xb are common.

<span class="mw-page-title-main">Inequality of arithmetic and geometric means</span> Arithmetic mean is greater than or equal to geometric mean

In mathematics, the inequality of arithmetic and geometric means, or more briefly the AM–GM inequality, states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same list; and further, that the two means are equal if and only if every number in the list is the same.

<span class="mw-page-title-main">Automatic differentiation</span> Techniques to evaluate the derivative of a function specified by a computer program

In mathematics and computer algebra, automatic differentiation (AD), also called algorithmic differentiation, computational differentiation, auto-differentiation, or simply autodiff, is a set of techniques to evaluate the derivative of a function specified by a computer program. AD exploits the fact that every computer program, no matter how complicated, executes a sequence of elementary arithmetic operations and elementary functions. By applying the chain rule repeatedly to these operations, derivatives of arbitrary order can be computed automatically, accurately to working precision, and using at most a small constant factor more arithmetic operations than the original program.

A continuous-time Markov chain (CTMC) is a continuous stochastic process in which, for each state, the process will change state according to an exponential random variable and then move to a different state as specified by the probabilities of a stochastic matrix. An equivalent formulation describes the process as changing state according to the least value of a set of exponential random variables, one for each possible state it can move to, with the parameters determined by the current state.

<span class="mw-page-title-main">Logarithmic mean</span>

In mathematics, the logarithmic mean is a function of two non-negative numbers which is equal to their difference divided by the logarithm of their quotient. This calculation is applicable in engineering problems involving heat and mass transfer.

In mathematics and statistics, the Fréchet mean is a generalization of centroids to metric spaces, giving a single representative point or central tendency for a cluster of points. It is named after Maurice Fréchet. Karcher mean is the renaming of the Riemannian Center of Mass construction developed by Karsten Grove and Hermann Karcher. On the real numbers, the arithmetic mean, median, geometric mean, and harmonic mean can all be interpreted as Fréchet means for different distance functions.

In probability theory, concentration inequalities provide bounds on how a random variable deviates from some value. The law of large numbers of classical probability theory states that sums of independent random variables are, under very mild conditions, close to their expectation with a large probability. Such sums are the most basic examples of random variables concentrated around their mean. Recent results show that such behavior is shared by other functions of independent random variables.

In mathematics, the field of logarithmic-exponential transseries is a non-Archimedean ordered differential field which extends comparability of asymptotic growth rates of elementary nontrigonometric functions to a much broader class of objects. Each log-exp transseries represents a formal asymptotic behavior, and it can be manipulated formally, and when it converges, corresponds to actual behavior. Transseries can also be convenient for representing functions. Through their inclusion of exponentiation and logarithms, transseries are a strong generalization of the power series at infinity and other similar asymptotic expansions.

References

  1. Nielsen, Frank; Nock, Richard (June 2017). "Generalizing skew Jensen divergences and Bregman divergences with comparative convexity". IEEE Signal Processing Letters. 24 (8): 2. arXiv: 1702.04877 . doi:10.1109/LSP.2017.2712195. S2CID   31899023.
  2. de Carvalho, Miguel (2016). "Mean, what do you Mean?". The American Statistician . 70 (3): 764‒776. doi:10.1080/00031305.2016.1148632. hdl: 20.500.11820/fd7a8991-69a4-4fe5-876f-abcd2957a88c . S2CID   219595024.
  3. Barczy, M. & Burai, P. (2019). "Limit theorems for Bajraktarević and Cauchy quotient means of independent identically distributed random variables". arXiv: 1909.02968 [math.PR].
  4. 1 2 Aczél, J.; Dhombres, J. G. (1989). Functional equations in several variables. With applications to mathematics, information theory and to the natural and social sciences. Encyclopedia of Mathematics and its Applications, 31. Cambridge: Cambridge Univ. Press.
  5. Grudkin, Anton (2019). "Characterization of the quasi-arithmetic mean". Math stackexchange.
  6. Aumann, Georg (1937). "Vollkommene Funktionalmittel und gewisse Kegelschnitteigenschaften". Journal für die reine und angewandte Mathematik . 1937 (176): 49–55. doi:10.1515/crll.1937.176.49. S2CID   115392661.
  7. Aumann, Georg (1934). "Grundlegung der Theorie der analytischen Analytische Mittelwerte". Sitzungsberichte der Bayerischen Akademie der Wissenschaften: 45–81.