RAPTA

Last updated

RAPTA (ruthenium arene PTA) is a class of experimental cancer drugs. They consist of a central ruthenium(II) atom complexed to an arene group, chlorides, and 1,3,5-triaza-7-phosphaadamantane (PTA) forming an organoruthenium half-sandwich compound. Other related ruthenium anti-cancer drugs include NAMI-A, KP1019 and BOLD-100.

Contents

Structure and properties

It is envisaged that RAPTA derivatives have the “piano stool” structure like others organometallic half-sandwich compound. [1] This is observed by the crystal structure of RAPTA-C which exhibits the archetypal half-sandwich structure. [2] The PTA ligand was designed to make the complexes more soluble in water, and the two labile chlorido ligands can exchange to aquo ligand in the presence of water. [3]

Synthesis

In a typical synthesis, [Ru (η6-p-cymene)Cl2] is reacted with 2 equivalents of PTA for 24 hours under reflux in methanol to yield to [Ru(η6-p-cymene)Cl2(pta)]. [4]

RAPTA derivatives

RAPTA-T RAPTA-T.tif
RAPTA-T
RAPTA-C RAPTA C.tif
RAPTA-C

Several derivatives of RAPTA were synthesized, and two of the most notable are [Ru(η6-p-cymene)Cl2(pta)] (RAPTA-C) and [Ru(η6-toluene)Cl2(pta)] (RAPTA-T).

Mode of action

At first, RAPTA was anticipated to hydrolyze and interact with DNA to target primary tumors, which is similar to the platinum analogue cisplatin. Studies showed that adducts form between RAPTA compounds and proteins (especially cathepsin B and thioredoxin reductase(TrxR)). [5] [6] Moreover, the reactivity of RAPTA in the presence of protein was totally different than that of cisplatin. [7] In vitro studies showed that cytotoxicity of RAPTA derivatives was much less as compared to cisplatin, and some RAPTA compounds are not even cytotoxic to healthy cells. [8] Surprisingly, both RAPTA-C and RAPTA-T showed the ability to inhibit lung metastasis in mice bearing middle cerebral artery mammary carcinoma (by measuring the number and weight of the metastases), whilst having small effect on primary tumor. [9] The only ruthenium complex which proves the ability against metastasis was NAMI-A, and this work has high practical application in chemotherapy since the removal of primary tumor can be done through frequent surgery while the number of metastasis treatments are limited. [10]

Related Research Articles

<span class="mw-page-title-main">Ruthenium(III) chloride</span> Chemical compound

Ruthenium(III) chloride is the chemical compound with the formula RuCl3. "Ruthenium(III) chloride" more commonly refers to the hydrate RuCl3·xH2O. Both the anhydrous and hydrated species are dark brown or black solids. The hydrate, with a varying proportion of water of crystallization, often approximating to a trihydrate, is a commonly used starting material in ruthenium chemistry.

p-Cymene is a naturally occurring aromatic organic compound. It is classified as an alkylbenzene related to monocyclic monoterpenes. Its structure consists of a benzene ring para-substituted with a methyl group and an isopropyl group. p-Cymene is insoluble in water, but miscible with organic solvents.

<span class="mw-page-title-main">Titanocene dichloride</span> Chemical compound

Titanocene dichloride is the organotitanium compound with the formula (η5-C5H5)2TiCl2, commonly abbreviated as Cp2TiCl2. This metallocene is a common reagent in organometallic and organic synthesis. It exists as a bright red solid that slowly hydrolyzes in air. It shows antitumour activity and was the first non-platinum complex to undergo clinical trials as a chemotherapy drug.

In chemistry, transfer hydrogenation is a chemical reaction involving the addition of hydrogen to a compound from a source other than molecular H2. It is applied in laboratory and industrial organic synthesis to saturate organic compounds and reduce ketones to alcohols, and imines to amines. It avoids the need for high-pressure molecular H2 used in conventional hydrogenation. Transfer hydrogenation usually occurs at mild temperature and pressure conditions using organic or organometallic catalysts, many of which are chiral, allowing efficient asymmetric synthesis. It uses hydrogen donor compounds such as formic acid, isopropanol or dihydroanthracene, dehydrogenating them to CO2, acetone, or anthracene respectively. Often, the donor molecules also function as solvents for the reaction. A large scale application of transfer hydrogenation is coal liquefaction using "donor solvents" such as tetralin.

<span class="mw-page-title-main">Sandwich compound</span> Chemical compound made of two ring ligands bound to a metal

In organometallic chemistry, a sandwich compound is a chemical compound featuring a metal bound by haptic, covalent bonds to two arene (ring) ligands. The arenes have the formula CnHn, substituted derivatives and heterocyclic derivatives. Because the metal is usually situated between the two rings, it is said to be "sandwiched". A special class of sandwich complexes are the metallocenes.

<span class="mw-page-title-main">Dichlorotetrakis(dimethylsulfoxide)ruthenium(II)</span> Chemical compound

Dichlorotetrakis(dimethyl sulfoxide) ruthenium(II) describes coordination compounds with the formula RuCl2(dmso)4, where DMSO is dimethylsulfoxide. Both cis and trans isomers are known, but the cis isomer is more common. The cis isomer is a yellow, air-stable solid that is soluble in some organic solvents. These sulfoxide complexes are used in the synthesis of various ruthenium(ii) complexes. They have also attracted attention as possible anti-cancer drugs.

<span class="mw-page-title-main">(Cymene)ruthenium dichloride dimer</span> Chemical compound

(Cymene)ruthenium dichloride dimer is the organometallic compound with the formula [(cymene)RuCl2]2. This red-coloured, diamagnetic solid is a reagent in organometallic chemistry and homogeneous catalysis. The complex is structurally similar to (benzene)ruthenium dichloride dimer.

<span class="mw-page-title-main">Chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium</span> Chemical compound

Chloro(cyclopentadienyl)bis(triphenylphosphine)ruthenium is the organoruthenium half-sandwich compound with formula RuCl(PPh3)2(C5H5). It as an air-stable orange crystalline solid that is used in a variety of organometallic synthetic and catalytic transformations. The compound has idealized Cs symmetry. It is soluble in chloroform, dichloromethane, and acetone.

<span class="mw-page-title-main">Organoruthenium chemistry</span>

Organoruthenium chemistry is the chemistry of organometallic compounds containing a carbon to ruthenium chemical bond. Several organoruthenium catalysts are of commercial interest and organoruthenium compounds have been considered for cancer therapy. The chemistry has some stoichiometric similarities with organoiron chemistry, as iron is directly above ruthenium in group 8 of the periodic table. The most important reagents for the introduction of ruthenium are ruthenium(III) chloride and triruthenium dodecacarbonyl.

Organovanadium chemistry is the chemistry of organometallic compounds containing a carbon (C) to vanadium (V) chemical bond. Organovanadium compounds find only minor use as reagents in organic synthesis but are significant for polymer chemistry as catalysts.

<span class="mw-page-title-main">(Mesitylene)molybdenum tricarbonyl</span> Chemical compound

(Mesitylene)molybdenum tricarbonyl is an organomolybdenum compound derived from the aromatic compound mesitylene (1,3,5-trimethylbenzene) and molybdenum carbonyl. It exists as pale yellow crystals, which are soluble in organic solvents but decompose when in solution. It has been examined as a catalyst and reagent.

Gábor Laurenczy is a Hungarian-Swiss chemist and academic. He is a Professor Emeritus at the École Polytechnique Fédérale de Lausanne. He is academician, External Member of the Hungarian Academy of Sciences.

<span class="mw-page-title-main">NAMI-A</span> Chemical compound

NAMI-A is the imidazolium]] salt of the coordination complex [RuCl4(dmso)(C3N2H4)] where dmso is dimethylsulfoxide and C3N2H4 is imidazole Together with KP1019 and BOLD-100, NAMI-A has been investigated as an anticancer agent.

Ruthenium anti-cancer drugs are coordination complexes of ruthenium complexes that have anticancer properties. They promise to provide alternatives to platinum-based drugs for anticancer therapy. No ruthenium anti-cancer drug has been commercialized.

<span class="mw-page-title-main">Half sandwich compound</span> Class of coordination compounds

Half sandwich compounds, also known as piano stool complexes, are organometallic complexes that feature a cyclic polyhapto ligand bound to an MLn center, where L is a unidentate ligand. Thousands of such complexes are known. Well-known examples include cyclobutadieneiron tricarbonyl and (C5H5)TiCl3. Commercially useful examples include (C5H5)Co(CO)2, which is used in the synthesis of substituted pyridines, and methylcyclopentadienyl manganese tricarbonyl, an antiknock agent in petrol.

<span class="mw-page-title-main">Pentamethylcyclopentadienyl ruthenium dichloride dimer</span> Chemical compound

Pentamethylcyclopentadienyl ruthenium dichloride is an organoruthenium chemistry with the formula [(C5(CH3)5)RuCl2]2, commonly abbreviated [Cp*RuCl2]2. This brown paramagnetic solid is a reagent in organometallic chemistry. It is an unusual example of a compound that exists as isomers that differ in the intermetallic separation, a difference that is manifested in a number of physical properties.

<span class="mw-page-title-main">Christian Hartinger</span> New Zealand bioinorganic chemist known for his work in metal-based anticancer drugs

Christian G. Hartinger is an Austrian-born New Zealand bioinorganic chemist known for his work in metal-based anticancer drugs. In 2022 he was elected a Fellow of the Royal Society Te Apārangi.

<span class="mw-page-title-main">(Benzene)ruthenium dichloride dimer</span> Chemical compound

(Benzene)ruthenium dichloride dimer is the organoruthenium compound with the formula [(C6H6)RuCl2]2. This red-coloured, diamagnetic solid is a reagent in organometallic chemistry and homogeneous catalysis.

Metal arene complexes are organometallic compounds of the formula (C6R6)xMLy. Common classes are of the type (C6R6)ML3 and (C6R6)2M. These compounds are reagents in inorganic and organic synthesis. The principles that describe arene complexes extend to related organic ligands such as many heterocycles (e.g. thiophene) and polycyclic aromatic compounds (e.g. naphthalene).

<span class="mw-page-title-main">1,3,5-Triaza-7-phosphaadamantane</span> Chemical compound

1,3,5-Triaza-7-phosphaadamantane (PTA) is a chemical compound with the formula C6H12N3P, a product of the substitution of a nitrogen atom of hexamethylenetetramine with a phosphorus atom. It is soluble in water, methanol, trichloromethane, acetone, ethanol and DMSO, insoluble in hydrocarbon solvent. As a reagent in organic synthesis, it is used as a ligand for transition metal complexes and as a catalyst for Baylis–Hillman reactions.

References

  1. Gasser, G.; Ott, I.; Metzler-Nolte, N. (2011). "Organometallic anticancer compounds". J. Med. Chem. 1 (1): 3–25. doi:10.1021/jm100020w. PMC   3018145 . PMID   21077686.
  2. Allardyce, Claire S.; Dyson, Paul J.; Ellis, David J.; Heath, Sarah L. (2001). "[Ru(η6-p-cymene)Cl2(pta)] (pta = 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane): a water soluble compound that exhibits pH dependent DNA binding providing selectivity for diseased cells". Chemical Communications (15): 1396–1397. doi:10.1039/b104021a.
  3. Ang, W.; Casini, A.; Sava, G.; Dyson, P. J. (2011). "Organometallic ruthenium-based antitumor compounds with novel modes of action". J. Organomet. Chem. 696 (5): 989–98. doi:10.1016/j.jorganchem.2010.11.009.
  4. Claire. S, A.; Paul, J. D.; David, J. E.; Sarah, L. H. (2001). "[Ru(η6-p-cymene)Cl2(pta)] (pta = 1,3,5-triaza-7-phosphatricyclo- [3.3.1.1]decane): a water soluble compound that exhibits pH dependent DNA binding providing selectivity for diseased cells". Chem. Commun. 15 (15): 1396–1397. doi:10.1039/B104021A.
  5. Casini, A.; Mastrobuoni, G.; Ang, W. H.; Gabbiani, C.; Pieraccini, G.; Moneti, G.; Dyson, P. J.; Messori, L. (2007). "ESI-MS characterization of protein adducts of anticancer ruthenium(II) arene PTA(RAPTA) complexes". ChemMedChem. 2 (5): 631–635. doi:10.1002/cmdc.200600258. PMID   17366652. S2CID   26537039.
  6. Casini, A.; Gabbiani, C.; Sorrentino, F.; Rigobello, M.P.; Bindoli, A.; Geldbach, T.J.; Marrone, A.; Hartinger, C.G.; Dyson, P.J.; Messori, L. (2008). "Emerging protein targets for anticancer metallo drugs: inhibition of thioredoxin reductase and cathepsin B by antitumor ruthenium(II)-arene compounds". J. Med. Chem. 54 (21): 6773–6781. doi:10.1021/jm8006678. PMID   18834187.
  7. Casini, A.; Michelucci, E.; Gabbiani, C.; Pieraccini, G.; Moneti, G.; Dyson, P. J.; Messori, L. (2009). "Exploring metallodrug-protein interactions by mass spectrometry: Comparisons between platinum coordination complexes and an organometallic ruthenium compound". J. Biol. Inorg. Chem. 14 (5): 761–770. doi:10.1007/s00775-009-0489-5. PMID   19288144. S2CID   24313184.
  8. Gasser, G.; Ott, I.; Metzler-Nolte, N. (2011). "Organometallic anticancer compounds". J. Med. Chem. 1 (1): 3–25. doi:10.1021/jm100020w. PMC   3018145 . PMID   21077686.
  9. Scolaro, C.; Bergamo, A.; Brescacin, L.; Delfino, R.; Cocchietto, M.; Laurenczy, G.; Gelbach, T.J.; Sava, G; Dyson, P.J. (2005). "In vitro and in vivo evaluation of ruthenium(II)-arene PTA complexes". J. Med. Chem. 48 (12): 4161–4171. doi:10.1021/jm050015d. PMID   15943488.
  10. Dyson, P.J.; Sava, G. (2006). "Metal-based antitumour drugs in the post genomic era". Dalton Trans. (16): 1929–1933. doi:10.1039/b601840h. PMID   16609762.