Radiant heating and cooling system

Last updated

Room section with a thermally-active radiant slab cooling the space Radiant slab.png
Room section with a thermally-active radiant slab cooling the space

A radiant heating and cooling system refers to temperature-controlled surfaces that exchange heat with their surrounding environment through convection and radiation. By definition, in radiant heating and cooling systems, thermal radiation covers more than 50% of heat exchange within the space. [1] Hydronic radiant heating and cooling systems are water-based. It refers to panels or embedded building components (floors, ceilings or walls). Other types include air-based and electrical systems (which use electrical resistance for heating purpose mainly). Important portions of building surfaces are usually required for the radiant exchange.

Convection movement of groups of molecules within fluids such as liquids or gases, and within rheids; takes place through advection, diffusion or both

Convection is the heat transfer due to the bulk movement of molecules within fluids such as gases and liquids, including molten rock (rheid). Convection includes sub-mechanisms of advection, and diffusion.

Thermal radiation electromagnetic radiation generated by the thermal motion of charged particles in matter

Thermal radiation is electromagnetic radiation generated by the thermal motion of particles in matter. All matter with a temperature greater than absolute zero emits thermal radiation. Particle motion results in charge-acceleration or dipole oscillation which produces electromagnetic radiation.

Contents

Applications

Radiant heating and cooling systems can be used in commercial, residential, education, and recreational buildings, museums, hospitals, and other type of buildings. The application depends on the type of radiant system (see below types of radiant systems), on climate conditions and on ventilation system used.

System description

Radiative heat exchange

Heat radiation is the energy in the form of electromagnetic waves emitted by a solid, liquid, or gas as a result of its temperature. [2] In buildings, the radiant heat flow between two internal surfaces (or a surface and a person) is influenced by the emissivity of the heat emitting surface and by the view factor between this surface and the receptive surface (object or person) in the room. [3] The heat transfer by radiation is proportional to the power of four of the absolute surface temperature.

Emissivity

The emissivity of the surface of a material is its effectiveness in emitting energy as thermal radiation. Thermal radiation is electromagnetic radiation and it may include both visible radiation (light) and infrared radiation, which is not visible to human eyes. The thermal radiation from very hot objects is easily visible to the eye. Quantitatively, emissivity is the ratio of the thermal radiation from a surface to the radiation from an ideal black surface at the same temperature as given by the Stefan–Boltzmann law. The ratio varies from 0 to 1. The surface of a perfect black body emits thermal radiation at the rate of approximately 448 watts per square metre at room temperature ; all real objects have emissivities less than 1.0, and emit radiation at correspondingly lower rates.

In radiative heat transfer, a view factor, , is the proportion of the radiation which leaves surface that strikes surface . In a complex 'scene' there can be any number of different objects, which can be divided in turn into even more surfaces and surface segments.

The emissivity of a material (usually written ε or e) is the relative ability of its surface to emit energy by radiation. A black body has an emissivity of 1 and a perfect reflector has an emissivity of 0. [2]

In radiative heat transfer, a view factor quantifies the relative importance of the radiation that leaves an object (person or surface) and strikes another one, considering the other surrounding objects. In enclosures, radiation leaving a surface is conserved, therefore, the sum of all view factors associated with a given object is equal to 1. In the case of a room, the view factor of a radiant surface and a person depend on their relative positions. As a person is often changing position and as a room might be occupied by many persons at the same time, diagrams for omnidirectional person can be used. [4]

Thermal response time

Response time (τ95), aka time constant, is used to analyze the dynamic thermal performance of radiant systems. The response time for a radiant system is defined as the time it takes for the surface temperature of a radiant system to reach 95% of the difference between its final and initial values when a step change in control of the system is applied as input. [5] It is mainly influenced by concrete thickness, pipe spacing, and to a less degree, concrete type. It is not affected by pipe diameter, room operative temperature, supply water temperature, and water flow regime. By using response time, radiant systems can be classified into fast response (τ95< 10 min, like RCP), medium response (1 h<τ95<9 h, like Type A, B, D, G) and slow response (9 h< τ95<19 h, like Type E and Type F). [5] Additionally, floor and ceiling radiant systems have different response times due to different heat transfer coefficients with room thermal environment, and the pipe-embedded position.

In physics and engineering, the time constant, usually denoted by the Greek letter τ (tau), is the parameter characterizing the response to a step input of a first-order, linear time-invariant (LTI) system. The time constant is the main characteristic unit of a first-order LTI system.

Operative temperature and thermal comfort

The operative temperature is an indicator of thermal comfort which takes into account the effects of both convection and radiation. Operative temperature is defined as a uniform temperature of a radiantly black enclosure in which an occupant would exchange the same amount of heat by radiation plus convection as in the actual nonuniform environment.

Operative temperature, also known as Dry resultant temperature, or Resultant temperature, is defined as a uniform temperature of an imaginary black enclosure in which an occupant would exchange the same amount of heat by radiation plus convection as in the actual nonuniform environment. Some references also use the terms 'equivalent temperature" or 'effective temperature' to describe combined effects of convective and radiant heat transfer. In design, operative temperature can be defined as the average of the mean radiant and ambient air temperatures, weighted by their respective heat transfer coefficients. The instrument used for assessing environmental thermal comfort in terms of operative temperature is called a eupatheoscope and was invented by A. F. Dufton in 1929. Mathematically, operative temperature can be shown as;

Thermal comfort is the condition of mind that expresses satisfaction with the thermal environment and is assessed by subjective evaluation. The human body can be viewed as a heat engine where food is the input energy. The human body will generate excess heat into the environment, so the body can continue to operate. The heat transfer is proportional to temperature difference. In cold environments, the body loses more heat to the environment and in hot environments the body does not exert enough heat. Both the hot and cold scenarios lead to discomfort. Maintaining this standard of thermal comfort for occupants of buildings or other enclosures is one of the important goals of HVAC design engineers. Most people will feel comfortable at room temperature, colloquially a range of temperatures around 20 to 22 °C, but this may vary greatly between individuals and depending on factors such as activity level, clothing, and humidity.

With radiant systems, thermal comfort is achieved at warmer interior temp than all-air systems for cooling scenario, and at lower temperature than all-air systems for heating scenario. [6] Thus, radiant systems can helps to achieve energy savings in building operation while maintaining the wished comfort level.

Thermal comfort in radiant vs. all-air buildings

Based on a large study performed using Center for the Built Environment's Indoor environmental quality (IEQ) occupant survey to compare occupant satisfaction in radiant and all-air conditioned buildings, both systems create equal indoor environmental conditions, including acoustic satisfaction, with a tendency towards improved temperature satisfaction in radiant buildings. [7]

Radiant temperature asymmetry

The radiant temperature asymmetry is defined as the difference between the plane radiant temperature of the two opposite sides of a small plane element. As regards occupants within a building, thermal radiation field around the body may be non-uniform due to hot and cold surfaces and direct sunlight, bringing therefore local discomfort. The norm ISO 7730 and the ASHRAE 55 standard give the predicted percentage of dissatisfied occupants (PPD) as a function of the radiant temperature asymmetry and specify the acceptable limits. In general, people are more sensitive to asymmetric radiation caused by a warm ceiling than that caused by hot and cold vertical surfaces. The detailed calculation method of percentage dissatisfied due to a radiant temperature asymmetry is described in ISO 7730.

Design considerations

While specific design requirements will depend on the type of radiant system, a few issues are common to most radiant systems.

Hydronic radiant systems

Depending on the position of the pipes in the building construction, hydronic radiant systems can be sorted into 4 main categories:

Types (ISO 11855)

The norm ISO 11855-2 [11] focuses on embedded water based surface heating and cooling systems and TABS. Depending on construction details, this norm distinguishes 7 different types of those systems (Types A to G)

Section diagram of a radiant embedded surface system (ISO 11855, type A) Hydronic embedded radiant system type A.png
Section diagram of a radiant embedded surface system (ISO 11855, type A)
Section diagram of a radiant embedded surface system (ISO 11855, type B) Hydronic embedded radiant system type B.png
Section diagram of a radiant embedded surface system (ISO 11855, type B)
Section diagram of a radiant embedded surface system (ISO 11855, type G) Hydronic radiant system type G.png
Section diagram of a radiant embedded surface system (ISO 11855, type G)
Section diagram of thermally activated building system (ISO 11855, type E) Hydronic radiant system type E.png
Section diagram of thermally activated building system (ISO 11855, type E)
Section diagram of radiant capillary system (ISO 11855, type F) Hydronic radiant system type F.png
Section diagram of radiant capillary system (ISO 11855, type F)
Section diagram of a radiant panel Hydronic radiant panel.png
Section diagram of a radiant panel

Energy sources

Radiant systems are associated with low-exergy systems. Low-exergy refers to the possibility to utilize ‘low quality energy’ (i.e. dispersed energy that has little ability to do useful work). Both heating and cooling can in principle be obtained at temperature levels that are close to the ambient environment. The low temperature difference requires that the heat transmission takes place over relative big surfaces as for example applied in ceilings or underfloor heating systems. [12] Radiant systems using low temperature heating and high temperature cooling are typical example of low-exergy systems. Energy sources such as geothermal (direct cooling / geothermal heat pump heating) and solar hot water are compatible with radiant systems. These sources can lead to important savings in terms of primary energy use for buildings.

Notable buildings using radiant systems

Map of buildings using hydronic radiant heating and cooling systems

Cells left-aligned, table centered
BuildingYearCountryCityArchitectRadiant consultantRadiant system category
Kunsthaus Bregenz 1997 Austria Bregenz Peter Zumthor Meierhans+PartnerThermally activated building system
Suvarnabhumi Airport 2005 Thailand Bangkok Murphy JahnTranssolar and IBEEmbedded surface systems
Zollverein School2006 Germany Essen SANAA TranssolarThermally activated building system
Klarchek Information Commons, Loyola University Chicago 2007 United States Chicago, IL Solomon Cordwell BuenzTranssolarThermally activated building system
Lavin-Bernick Center, Tulane University 2007 United States New Orleans, LA VAJJTranssolarRadiant panels
David Brower Center 2009 United States Berkeley, CA Daniel Solomon Design PartnersIntegral GroupThermally activated building system
Manitoba Hydro 2009 Canada Winnipeg, MB KPMB Architects TranssolarThermally activated building system
Cooper Union 2009 United States New York, NY Morphosis ArchitectsIBE / Syska Hennessy GroupRadiant panels
Exploratorium (Pier 15-17)2013 United States San Francisco, CA EHDD Integral GroupEmbedded surface systems

Non-hydronic radiant systems

Related Research Articles

Heating, ventilation, and air conditioning Technology of indoor and vehicular environmental comfort

Heating, ventilation, and air conditioning (HVAC) is the technology of indoor and vehicular environmental comfort. Its goal is to provide thermal comfort and acceptable indoor air quality. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics and heat transfer. "Refrigeration" is sometimes added to the field's abbreviation, as HVAC&R or HVACR or "ventilation" is dropped, as in HACR.

Passive solar building design

In passive solar building design, windows, walls, and floors are made to collect, store, reflect, and distribute solar energy in the form of heat in the winter and reject solar heat in the summer. This is called passive solar design because, unlike active solar heating systems, it does not involve the use of mechanical and electrical devices.

Heat transfer transport of thermal energy in physical systems

Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.

R-value (insulation) measure of how well an object, per unit of its exposed area, resists conductive flow of heat: the greater the R-value, the greater the resistance, and so the better the thermal insulating properties of the object

Roughly speaking in the context of building and construction, the R-value is a measure of how well a two-dimensional barrier, such as a layer of insulation, a window or a complete wall or ceiling, resists the conductive flow of heat. R-value is the temperature difference per unit of heat flux needed to sustain one unit of heat flux between the warmer surface and colder surface of a barrier under steady-state conditions.

The mean radiant temperature (MRT) is defined as the uniform temperature of an imaginary enclosure in which the radiant heat transfer from the human body is equal to the radiant heat transfer in the actual non-uniform enclosure.

Hydronics

Hydronics is the use of a liquid heat-transfer medium in heating and cooling systems. The working fluid is typically water, glycol, or mineral oil. Some of the oldest and most common examples are steam and hot-water radiators. Historically, in large-scale commercial buildings such as high-rise and campus facilities, a hydronic system may include both a chilled and a heated water loop, to provide for both heating and air conditioning. Chillers and cooling towers are used either separately or together as means to provide water cooling, while boilers heat water. A recent innovation is the chiller boiler system, which provides an efficient form of HVAC for homes and smaller commercial spaces.

Electric heating process in which electrical energy is converted to heat

Electric heating is a process in which electrical energy is converted to heat energy. Common applications include space heating, cooking, water heating and industrial processes. An electric heater is an electrical device that converts an electric current into heat. The heating element inside every electric heater is an electrical resistor, and works on the principle of Joule heating: an electric current passing through a resistor will convert that electrical energy into heat energy. Most modern electric heating devices use nichrome wire as the active element; the heating element, depicted on the right, uses nichrome wire supported by ceramic insulators. A warning that these can go to very high temperatures and create excruciating burns

Displacement ventilation (DV) It is a room air distribution strategy where conditioned outdoor air is supplied at a low velocity from air supply diffusers located near floor level and extracted above the occupied zone, usually at ceiling height.

Underfloor heating and cooling is a form of central heating and cooling which achieves indoor climate control for thermal comfort using conduction, radiation and convection. The terms radiant heating and radiant cooling are commonly used to describe this approach because radiation is responsible for a significant portion of the resulting thermal comfort but this usage is technically correct only when radiation composes more than 50% of the heat exchange between the floor and the rest of the space.

Solar air conditioning refers to any air conditioning (cooling) system that uses solar power.

Passive cooling is a building design approach that focuses on heat gain control and heat dissipation in a building in order to improve the indoor thermal comfort with low or no energy consumption. This approach works either by preventing heat from entering the interior or by removing heat from the building. Natural cooling utilizes on-site energy, available from the natural environment, combined with the architectural design of building components, rather than mechanical systems to dissipate heat. Therefore, natural cooling depends not only on the architectural design of the building but on how the site's natural resources are used as heat sinks. Examples of on-site heat sinks are the upper atmosphere, the outdoor air (wind), and the earth/soil.

Building insulation material used to thermally insulate buildings

Building insulation is any object in a building used as insulation for any purpose. While the majority of insulation in buildings is for thermal purposes, the term also applies to acoustic insulation, fire insulation, and impact insulation. Often an insulation material will be chosen for its ability to perform several of these functions at once.

A chilled beam is a type of convection HVAC system designed to heat or cool large buildings. Pipes of water are passed through a "beam" either integrated into standard suspended ceiling systems or suspended a short distance from the ceiling of a room. As the beam chills the air around it, the air becomes denser and falls to the floor. It is replaced by warmer air moving up from below, causing a constant flow of convection and cooling the room. Heating works in much the same fashion, similar to a steam radiator. There are two types of chilled beams. Some passive types rely solely on convection, while there is a "radiant"/convective passive type that cools through a combination of radiant exchange (40%) and convection (60%). The passive approach can provide higher thermal comfort levels, while the active type uses the momentum of ventilation air entering at relatively high velocity to induce the circulation of room air through the unit.

Fan coil unit

A fan coil unit (FCU) is a simple device consisting of a heating and/or cooling heat exchanger or 'coil' and fan. It is part of an HVAC system found in residential, commercial, and industrial buildings. A fan coil unit is a diverse device sometimes using ductwork, and is used to control the temperature in the space where it is installed, or serve multiple spaces. It is controlled either by a manual on/off switch or by a thermostat, which controls the throughput of water to the heat exchanger using a control valve and/or the fan speed.

Snowmelt system

A snowmelt system prevents the build-up of snow and ice on cycleways, walkways, patios and roadways, or more economically, only a portion of the area such as a pair of 2-foot (0.61 m)-wide tire tracks on a driveway or a 3-foot (0.91 m) center portion of a sidewalk, etc. They function even during a storm thus improve safety and eliminate winter maintenance labor including shoveling or plowing snow and spreading de-icing salt or traction grit (sand). A snowmelt system may extend the life of the concrete, asphalt or under pavers by eliminating the use salts or other de-icing chemicals, and physical damage from winter service vehicles.

Radiator (heating) heat exchanger for space heating

Radiators and convectors are heat exchangers designed to transfer thermal energy from one medium to another for the purpose of space heating.

HVAC is a major subdiscipline of mechanical engineering. The goal of HVAC design is to balance indoor environmental comfort with other factors such as installation cost, ease of maintenance, and energy efficiency. The discipline of HVAC includes a large number of specialized terms and acronyms, many of which are summarized in this glossary.

Underfloor air distribution air distribution strategy for providing ventilation and space conditioning

Underfloor air distribution (UFAD) is an air distribution strategy for providing ventilation and space conditioning in buildings as part of the design of a HVAC system. UFAD systems use an underfloor supply plenum located between the structural concrete slab and a raised floor system to supply conditioned air through floor diffusers directly into the occupied zone of the building. UFAD systems are similar to conventional overhead systems (OH) in terms of the types of equipment used at the cooling and heating plants and primary air-handling units (AHU). Key differences include the use of an underfloor air supply plenum, warmer supply air temperatures, localized air distribution and thermal stratification.Thermal stratification is one of the featured characteristics of UFAD systems, which allows higher thermostat setpoints compared to the traditional overhead systems (OH). UFAD cooling load profile is different from a traditional OH system due to the impact of raised floor, particularly UFAD may have a higher peak cooling load than that of OH systems. This is because heat is gained from building penetrations and gaps within the structure itself.

Dedicated outdoor air system

A dedicated outdoor air system (DOAS) is a type of heating, ventilation and air-conditioning (HVAC) system that consists of two parallel systems: a dedicated system for delivering outdoor air ventilation that handles both the latent and sensible loads of conditioning the ventilation air, and a parallel system to handle the loads generated by indoor/process sources and those that pass through the building enclosure.

Cooling load is the rate at which sensible and latent heat must be removed from the space to maintain a constant space dry-bulb air temperature and humidity. Sensible heat into the space causes its air temperature to rise while latent heat is associated with the rise of the moisture content in the space. The building design, internal equipment, occupants, and outdoor weather conditions may affect the cooling load in a building using different heat transfer mechanisms. The SI units are watts.

References

  1. ASHRAE Handbook. HVAC Systems and Equipment. Chapter 6. Panel Heating and Cooling, American Society of Heating and Cooling, 2012
  2. 1 2 Oxford Reference, Oxford University
  3. Babiak, Jan (2007), PhD Thesis, Low Temperature Heating and High Temperature Cooling. Thermally activated building system, Department of Building Services, Technical University of Denmark
  4. ISO, EN. 7726. Ergonomics of the thermal environments-Instruments for measuring physical quantities, ISO, Geneva, International Organisation for Standardisation, 1998
  5. 1 2 Ning, Baisong; Schiavon, Stefano; Bauman, Fred S. (2017). "A novel classification scheme for design and control of radiant system based on thermal response time". Energy and Buildings. 137: 38–45. doi:10.1016/j.enbuild.2016.12.013. ISSN   0378-7788.
  6. ISO 11855-1. Building Environment Design - Design, Construction and Operation of Radiant Heating and Cooling Systems - Part 1, ISO, 2012
  7. Karmann, Caroline; Schiavon, Stefano; Graham, Lindsay T.; Raftery, Paul; Bauman, Fred (December 2017). "Comparing temperature and acoustic satisfaction in 60 radiant and all-air buildings". Building and Environment. 126: 431–441. doi:10.1016/j.buildenv.2017.10.024. ISSN   0360-1323.
  8. 1 2 Karmann, Caroline; Bauman, Fred S.; Raftery, Paul; Schiavon, Stefano; Frantz, William H.; Roy, Kenneth P. (March 2017). "Cooling capacity and acoustic performance of radiant slab systems with free-hanging acoustical clouds". Energy and Buildings. 138: 676–686. doi:10.1016/j.enbuild.2017.01.002. ISSN   0378-7788.
  9. Karmann, Caroline; Bauman, Fred; Raftery, Paul; Schiavon, Stefano; Koupriyanov, Mike (January 2018). "Effect of acoustical clouds coverage and air movement on radiant chilled ceiling cooling capacity". Energy and Buildings. 158: 939–949. doi:10.1016/j.enbuild.2017.10.046. ISSN   0378-7788.
  10. Babiak, Jan; Olesen, Bjarne W.; Petras, Dusan (2007), Low temperature heating and high temperature cooling: REHVA GUIDEBOOK No 7, REHVA
  11. ISO 11855-2. Building Environment Design - Design, Construction and Operation of Radiant Heating and Cooling Systems - Part 2, ISO, 2012
  12. Nielsen, Lars (2012), "Building Integrated System Design for Sustainable Heating and Cooling" (PDF), REHVA journal: 24–27