Rama Cont | |
---|---|
Born | Rama Cont 30 June 1972 |
Nationality | Iran |
Alma mater | École Polytechnique |
Known for | Systemic risk modelling, Functional Ito calculus, Pathwise Ito calculus, Model risk, Liquidity at risk |
Awards |
|
Scientific career | |
Fields | |
Institutions | |
Thesis | Des marches aléatoires aux marchés aléatoires. Modélisation statistique des marchés financiers: études empiriques et approches théoriques. [4] (1998) |
Doctoral advisor | Jean-Philippe Bouchaud [5] |
Website | people |
Rama Cont is the Statutory Professor of Mathematical Finance at the University of Oxford. [6] [7] He is known for contributions to probability theory, stochastic analysis and mathematical modelling in finance, in particular mathematical models of systemic risk. [3] He was awarded the Louis Bachelier Prize by the French Academy of Sciences in 2010.
Born in Tehran (Iran), Cont obtained his undergraduate degree from Ecole Polytechnique (France), [7] a master's degree in theoretical physics from Ecole Normale Superieure and a degree in Chinese Language from Institut national des langues et civilisations orientales. [8] His doctoral thesis focused on the application of Lévy processes in financial modelling.
Cont started his career as a CNRS researcher in applied mathematics at Ecole Polytechnique (France) in 1998 and held academic positions at Ecole Polytechnique, Columbia University and Imperial College London. [8] He was appointed 'Directeur de Recherche CNRS' (CNRS Senior Research Scientist) in 2008 and was chair of mathematical finance at Imperial College London [9] from 2012 to 2018. He was elected Statutory Professor in Mathematical Finance at the Oxford Mathematical Institute and professorial fellow of St Hugh's College, Oxford in 2018. [10] [11]
Cont's research focuses on probability theory, stochastic analysis and mathematical modelling in finance. [12] His mathematical work focuses on pathwise methods in stochastic analysis [13] and the Functional Ito calculus. [14]
In quantitative finance he is known in particular for his work on models based on jump processes, [15] the stochastic modelling of limit order books as queueing systems [16] , [17] machine learning methods in finance [18] and the mathematical modelling of systemic risk. [19] [20] He was editor in chief of the Encyclopedia of Quantitative Finance. [21]
Cont has served as advisor to central banks and international organizations such as the International Monetary Fund and the Bank for International Settlements on stress testing and systemic risk monitoring. His work on network models, financial stability and central clearing [22] has influenced central banks and regulators . [23] He has given numerous media interviews [24] [25] [26] [27] [28] on issues related to systemic risk and financial regulation.
Cont is known in mathematics for his the "Causal functional calculus", a calculus for non-anticipative, or "causal", functionals on the space of paths. [29] Cont and collaborators built on the seminal work of German mathematician Hans Föllmer [30] and Bruno Dupire to construct a calculus for non-anticipative functionals, [31] which includes as a special case the so-called Ito-Föllmer calculus, a pathwise counterpart of Ito's stochastic calculus. [32] Subsequent work by Cont and Nicolas Perkowski [33] extended the Ito-Föllmer calculus to functions and functionals of more general irregular paths with non-zero p-th order variation.
Work by Cont and his collaborators on mathematical modeling of systemic risk and financial stability, in particular on network models of financial contagion and the modeling of indirect contagion via 'fire sales', has influenced academic research and policy in this area. [23] [34]
Cont's research on central clearing in over-the-counter (OTC) markets has influenced risk management practices of central counterparties and regulatory thinking on central clearing. [35] Cont has argued that central clearing does not eliminate counterparty risk but transforms it into liquidity risk, therefore risk management and stress testing of central counterparties should focus on liquidity risk and liquidity resources, not capital. [36]
Cont introduced a rigorous approach for the assessment of model risk [37] which has been influential in the design of model risk management frameworks in financial institutions. [38] [39]
Cont, Deguest and Scandolo [40] introduced the concept of 'risk measurement procedure', an empirical counterpart of the notion of risk measure, and defined a robust class of risk measurement procedures known as 'Range Value-at-risk' (RVaR), a robust alternative to Expected shortfall. [41]
Cont, Kotlicki and Valderrama define the concept of Liquidity at risk, [42] as the amount of liquid assets needed by a financial institution to face liquidity outflows in this scenario.
Cont was awarded the Louis Bachelier Prize by the French Academy of Sciences in 2010 for his work on mathematical modelling of financial markets. [1] He was elected Fellow of the Society for Industrial and Applied Mathematics (SIAM) in 2017 for "contributions to stochastic analysis and mathematical finance". [3] He received the Award for Excellence in Interdisciplinary Research (APEX) from the Royal Society in 2017 for his research on mathematical modelling of systemic risk. [2] [43]
In probability theory and related fields, a stochastic or random process is a mathematical object usually defined as a family of random variables in a probability space, where the index of the family often has the interpretation of time. Stochastic processes are widely used as mathematical models of systems and phenomena that appear to vary in a random manner. Examples include the growth of a bacterial population, an electrical current fluctuating due to thermal noise, or the movement of a gas molecule. Stochastic processes have applications in many disciplines such as biology, chemistry, ecology, neuroscience, physics, image processing, signal processing, control theory, information theory, computer science, and telecommunications. Furthermore, seemingly random changes in financial markets have motivated the extensive use of stochastic processes in finance.
Stochastic calculus is a branch of mathematics that operates on stochastic processes. It allows a consistent theory of integration to be defined for integrals of stochastic processes with respect to stochastic processes. This field was created and started by the Japanese mathematician Kiyosi Itô during World War II.
Paul Pierre Lévy was a French mathematician who was active especially in probability theory, introducing fundamental concepts such as local time, stable distributions and characteristic functions. Lévy processes, Lévy flights, Lévy measures, Lévy's constant, the Lévy distribution, the Lévy area, the Lévy arcsine law, and the fractal Lévy C curve are named after him.
In finance, systemic risk is the risk of collapse of an entire financial system or entire market, as opposed to the risk associated with any one individual entity, group or component of a system, that can be contained therein without harming the entire system. It can be defined as "financial system instability, potentially catastrophic, caused or exacerbated by idiosyncratic events or conditions in financial intermediaries". It refers to the risks imposed by interlinkages and interdependencies in a system or market, where the failure of a single entity or cluster of entities can cause a cascading failure, which could potentially bankrupt or bring down the entire system or market. It is also sometimes erroneously referred to as "systematic risk".
Liquidity risk is a financial risk that for a certain period of time a given financial asset, security or commodity cannot be traded quickly enough in the market without impacting the market price.
A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices, random growth models or physical systems that are subjected to thermal fluctuations.
In finance, the Heston model, named after Steven L. Heston, is a mathematical model that describes the evolution of the volatility of an underlying asset. It is a stochastic volatility model: such a model assumes that the volatility of the asset is not constant, nor even deterministic, but follows a random process.
Kalyanapuram Rangachari Parthasarathy was an Indian statistician who was professor emeritus at the Indian Statistical Institute and a pioneer of quantum stochastic calculus. Parthasarathy was the recipient of the Shanti Swarup Bhatnagar Prize for Science and Technology in Mathematical Science in 1977 and the TWAS Prize in 1996.
Bruno Dupire is a researcher and lecturer in quantitative finance. He is currently Head of Quantitative Research at Bloomberg LP. He is best known for his contributions to local volatility modeling and Functional Itô Calculus. He is also an Instructor at New York University since 2005, in the Courant Master of Science Program in Mathematics in Finance.
In finance, model risk is the risk of loss resulting from using insufficiently accurate models to make decisions, originally and frequently in the context of valuing financial securities.
Damiano Brigo is a mathematician known for research in mathematical finance, filtering theory, stochastic analysis with differential geometry, probability theory and statistics, authoring more than 130 research publications and three monographs. From 2012 he serves as full professor with a chair in mathematical finance at the Department of Mathematics of Imperial College London, where he headed the Mathematical Finance group in 2012–2019. He is also a well known quantitative finance researcher, manager and advisor in the industry. His research has been cited and published also in mainstream industry publications, including Risk Magazine, where he has been the most cited author in the twenty years 1998–2017. He is often requested as a plenary or invited speaker both at academic and industry international events. Brigo's research has also been used in court as support for legal proceedings.
Moshe Zakai was a Distinguished Professor at the Technion, Israel in electrical engineering, member of the Israel Academy of Sciences and Humanities and Rothschild Prize winner.
In financial mathematics, the entropic risk measure is a risk measure which depends on the risk aversion of the user through the exponential utility function. It is a possible alternative to other risk measures as value-at-risk or expected shortfall.
Quantitative analysis is the use of mathematical and statistical methods in finance and investment management. Those working in the field are quantitative analysts (quants). Quants tend to specialize in specific areas which may include derivative structuring or pricing, risk management, investment management and other related finance occupations. The occupation is similar to those in industrial mathematics in other industries. The process usually consists of searching vast databases for patterns, such as correlations among liquid assets or price-movement patterns.
Hans Föllmer is a German mathematician, currently professor emeritus at the Humboldt University of Berlin, visiting professor at the National University of Singapore, and Andrew D. White Professor-at-Large at Cornell University. He was awarded the Cantor medal in 2006. In 2007 he became doctor honoris causa at the Paris Dauphine University.
Mathematical finance, also known as quantitative finance and financial mathematics, is a field of applied mathematics, concerned with mathematical modeling in the financial field.
Robert Murdoch Anderson is Professor of Economics and of Mathematics at the University of California, Berkeley. He is director of the Center for Risk Management Research, University of California, Berkeley and he was chair of the University of California Academic Senate 2011–12. He is also the co-director for the Consortium for Data Analytics in Risk at UC Berkeley.
In probability theory, a nonlinear expectation is a nonlinear generalization of the expectation. Nonlinear expectations are useful in utility theory as they more closely match human behavior than traditional expectations. The common use of nonlinear expectations is in assessing risks under uncertainty. Generally, nonlinear expectations are categorized into sub-linear and super-linear expectations dependent on the additive properties of the given sets. Much of the study of nonlinear expectation is attributed to work of mathematicians within the past two decades.
Robin Lyth Hudson was a British mathematician notable for his contribution to quantum probability.
Damir Filipović is a Swiss mathematician specializing in quantitative finance. He holds the Swissquote Chair in Quantitative Finance and is the director of the Swiss Finance Institute at EPFL.