Ramanujan's master theorem

Last updated

In mathematics, Ramanujan's master theorem, named after Srinivasa Ramanujan, [1] is a technique that provides an analytic expression for the Mellin transform of an analytic function.

Contents

Page from Ramanujan's notebook stating his Master theorem. Ramanujan's "Master Theorem" page.jpg
Page from Ramanujan's notebook stating his Master theorem.

The result is stated as follows:

If a complex-valued function has an expansion of the form

then the Mellin transform of is given by

where is the gamma function.

It was widely used by Ramanujan to calculate definite integrals and infinite series.

Higher-dimensional versions of this theorem also appear in quantum physics through Feynman diagrams. [2]

A similar result was also obtained by Glaisher. [3]

Alternative formalism

An alternative formulation of Ramanujan's master theorem is as follows:

which gets converted to the above form after substituting and using the functional equation for the gamma function.

The integral above is convergent for subject to growth conditions on . [4]

Proof

A proof subject to "natural" assumptions (though not the weakest necessary conditions) to Ramanujan's master theorem was provided by G. H. Hardy [5] (chapter XI) employing the residue theorem and the well-known Mellin inversion theorem.

Application to Bernoulli polynomials

The generating function of the Bernoulli polynomials is given by:

These polynomials are given in terms of the Hurwitz zeta function:

by for . Using the Ramanujan master theorem and the generating function of Bernoulli polynomials one has the following integral representation: [6]

which is valid for .

Application to the gamma function

Weierstrass's definition of the gamma function

is equivalent to expression

where is the Riemann zeta function.

Then applying Ramanujan master theorem we have:

valid for .

Special cases of and are

Application to Bessel functions

The Bessel function of the first kind has the power series

By Ramanujan's master theorem, together with some identities for the gamma function and rearranging, we can evaluate the integral

valid for .

Equivalently, if the spherical Bessel function is preferred, the formula becomes

valid for .

The solution is remarkable in that it is able to interpolate across the major identities for the gamma function. In particular, the choice of gives the square of the gamma function, gives the duplication formula, gives the reflection formula, and fixing to the evaluable or gives the gamma function by itself, up to reflection and scaling.

Bracket integration method

The bracket integration method (method of brackets) applies Ramanujan's master theorem to a broad range of integrals. [7] The bracket integration method generates the integrand's series expansion, creates a bracket series, identifies the series coefficient and formula parameters and computes the integral. [8]

Integration formulas

This section identifies the integration formulas for integrand's with and without consecutive integer exponents and for single and double integrals. The integration formula for double integrals may be generalized to any multiple integral. In all cases, there is a parameter value or array of parameter values that solves one or more linear equations derived from the exponent terms of the integrand's series expansion.

Consecutive integer exponents, 1 variable

This is the function series expansion, integral and integration formula for an integral whose integrand's series expansion contains consecutive integer exponents. [9] The parameter is a solution to this linear equation.

General exponents, 1 variable

Applying the substitution generates the function series expansion, integral and integration formula for an integral whose integrand's series expansion may not contain consecutive integer exponents. [8] The parameter is a solution to this linear equation.

Consecutive integer exponents, double integral

This is the function series expansion, integral and integration formula for a double integral whose integrand's series expansion contains consecutive integer exponents. [10] The parameters and are solutions to these linear equations.

General exponents, double integral

This section describes the integration formula for a double integral whose integrand's series expansion may not contain consecutive integer exponents. Matrices contain the parameters needed to express the exponents in a series expansion of the integrand, and the determinant of invertible matrix is . [11] Applying the substitution generates the function series expansion, integral and integration formula for a double integral whose integrand's series expansion may not contain consecutive integer exponents. [10] The integral and integration formula are [12] [13] The parameter matrix is a solution to this linear equation. [14] .

Positive complexity index

In some cases, there may be more sums then variables. For example, if the integrand is a product of 3 functions of a common single variable, and each function is converted to a series expansion sum, the integrand is now a product of 3 sums, each sum corresponding to a distinct series expansion.

  • The number of brackets is the number of linear equations associated with an integral. This term reflects the common practice of bracketing each linear equation. [15]
  • The complexity index is the number of integrand sums minus the number of brackets (linear equations). Each series expansion of the integrand contributes one sum. [15]
  • The summation indices (variables) are the indices that index terms in a series expansion. In the example, there are 3 summation indices and because the integrand is a product of 3 series expansions. [16]
  • The free summation indices (variables) are the summation indices that remain after completing all integrations. Integration reduces the number of sums in the integrand by replacing the series expansions (sums) with an integration formula. Therefore, there are fewer summation indices after integration. The number of chosen free summation indices equals the complexity index. [16]

Integrals with a positive complexity index

The free summation indices are elements of set . The matrix of free summation indices is and the coefficients of the free summation indices is matrix . The remaining indices are set containing indices . Matrices and contain matrix elements that multiply or sum with the non-summation indices. The selected free summation indices must leave matrix non-singular. . This is the function's series expansion, integral and integration formula. [17] The parameters are linear functions of the parameters . [18] .

Bracket series

Table 1. Bracket series notations
Notation typePower series notationBracket series notation
Indicator
Multi-indicator
Bracket

Bracket series notations are notations that substitute for common power series notations (Table 1). [19] Replacing power series notations with bracket series notations transforms the power series to a bracket series. A bracket series facilitates identifying the formula parameters needed for integration. It is also recommended to replace a sum raised to a power: [19] with this bracket series expression:

Algorithm

This algorithm describes how to apply the integral formulas. [8] [9] [20]

Table 2. Integral formulas
Complexity indexIntegral formula
Zero, single integral
Zero, multiple integral
Positive
Input Integral expression
Output Integral value or integral cannot be assigned a value
  1. Express the integrand as a power series.
  2. Transform the integrand's power series to a bracket series.
  3. Obtain the complexity index, formula parameters and series coefficient function.
    1. Complexity index is the number of integrand sums minus number of brackets.
    2. Parameters or array are solutions to linear equations (zero complexity index, single integral), (zero complexity index, single integral) or (positive complexity index).
    3. Identify parameter or (zero complexity index, single integral) or compute (all other cases) from the associated linear equations.
    4. Identify the series coefficient function of the bracket series.
  4. If the complexity index is negative, return integral cannot be assigned a value.
  5. If the complexity index is zero, select the formula from table 2 for zero complexity index, single or multiple integral, compute the integral value with this formula, and return this integral value.
  6. If the complexity index is positive, select the formula from table 2 for positive complexity index, and compute the integral value as a series expansion with this formula for all possible choices of the free summation indices. Select the lowest complexity index, convergent series expansion, adding series that converge in the same region.
    1. If all series expansions are divergent series or null series (all series terms zero), then return integral cannot be assigned a value.
    2. If the series expansion is non-null and non-divergent, return this series expansion as the integral value.

Examples

Zero complexity index

The bracket method will integrate this integral.

  1. Express the integrand as a power series.
  2. Transform the power series to a bracket series.
  3. Obtain the complexity index, formula parameters and series coefficient function.
  4. Complexity index is zero.
    .
  5. Use table 2 to compute the integral.

Positive complexity index

The bracket method will integrate this integral. 1. Express the integrand as a power series. Use the sum raised to a power formula. 2. Transform the power series to a bracket series. 3. Obtain the complexity index, formula parameters and series coefficient function.

Complexity index is 1 as 3 sums and 2 brackets.
Select as the free index, . The linear equations, solutions, determinant and series coefficient are

4. Use table 2 to compute the integral

Citations

  1. Berndt 1985.
  2. González, Moll & Schmidt 2011.
  3. Glaisher 1874, pp. 53–55.
  4. Amdeberhan et al. 2012, pp. 103–120.
  5. Hardy 1978.
  6. Espinosa & Moll 2002, pp. 449–468.
  7. Gonzalez & Moll 2010, pp. 50–73.
  8. 1 2 3 Gonzalez, Jiu & Moll 2020, pp. 983–985.
  9. 1 2 Amdeberhan et al. 2012, p. 117, Eqn. 9.5.
  10. 1 2 Amdeberhan et al. 2012, p. 118.
  11. Ananthanarayan et al. 2023, Eqn. 7.
  12. Amdeberhan et al. 2012, p. 118, Eqn. 9.6.
  13. Ananthanarayan et al. 2023, Eqn. 8.
  14. Ananthanarayan et al. 2023, Eqn. 9.
  15. 1 2 Gonzalez et al. 2022, p. 28.
  16. 1 2 Amdeberhan et al. 2012, p. 117.
  17. Ananthanarayan et al. 2023, Eqn. 10.
  18. Ananthanarayan et al. 2023, Eqn. 11.
  19. 1 2 González, Moll & Schmidt 2011, p. 8.
  20. Ananthanarayan et al. 2023, Eqns. 9-11.

Related Research Articles

<span class="mw-page-title-main">Normal distribution</span> Probability distribution

In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is The parameter is the mean or expectation of the distribution, while the parameter is the variance. The standard deviation of the distribution is (sigma). A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate.

<span class="mw-page-title-main">Central limit theorem</span> Fundamental theorem in probability theory and statistics

In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the context of different conditions.

<span class="mw-page-title-main">Residue theorem</span> Concept of complex analysis

In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula. The residue theorem should not be confused with special cases of the generalized Stokes' theorem; however, the latter can be used as an ingredient of its proof.

In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the two-dimensional special case of Stokes' theorem. In one dimension, it is equivalent to the fundamental theorem of calculus. In three dimensions, it is equivalent to the divergence theorem.

<span class="mw-page-title-main">Green's function</span> Impulse response of an inhomogeneous linear differential operator

In mathematics, a Green's function is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions.

In mathematics, the Mellin transform is an integral transform that may be regarded as the multiplicative version of the two-sided Laplace transform. This integral transform is closely connected to the theory of Dirichlet series, and is often used in number theory, mathematical statistics, and the theory of asymptotic expansions; it is closely related to the Laplace transform and the Fourier transform, and the theory of the gamma function and allied special functions.

<span class="mw-page-title-main">Reproducing kernel Hilbert space</span> In functional analysis, a Hilbert space

In functional analysis, a reproducing kernel Hilbert space (RKHS) is a Hilbert space of functions in which point evaluation is a continuous linear functional. Specifically, a Hilbert space of functions from a set is an RKHS if, for each , there exists a function such that for all ,

In mathematics, specifically the study of differential equations, the Picard–Lindelöf theorem gives a set of conditions under which an initial value problem has a unique solution. It is also known as Picard's existence theorem, the Cauchy–Lipschitz theorem, or the existence and uniqueness theorem.

<span class="mw-page-title-main">Stable distribution</span> Distribution of variables which satisfies a stability property under linear combinations

In probability theory, a distribution is said to be stable if a linear combination of two independent random variables with this distribution has the same distribution, up to location and scale parameters. A random variable is said to be stable if its distribution is stable. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it.

In mathematics, the Lerch transcendent, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about a similar function in 1887. The Lerch transcendent, is given by:

<span class="mw-page-title-main">Arc length</span> Distance along a curve

Arc length is the distance between two points along a section of a curve.

In Bayesian statistics, the Jeffreys prior is a non-informative prior distribution for a parameter space. Named after Sir Harold Jeffreys, its density function is proportional to the square root of the determinant of the Fisher information matrix:

<span class="mw-page-title-main">Characteristic function (probability theory)</span> Fourier transform of the probability density function

In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution. If a random variable admits a probability density function, then the characteristic function is the Fourier transform of the probability density function. Thus it provides an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions. There are particularly simple results for the characteristic functions of distributions defined by the weighted sums of random variables.

The gradient theorem, also known as the fundamental theorem of calculus for line integrals, says that a line integral through a gradient field can be evaluated by evaluating the original scalar field at the endpoints of the curve. The theorem is a generalization of the second fundamental theorem of calculus to any curve in a plane or space rather than just the real line.

In mathematics and economics, transportation theory or transport theory is a name given to the study of optimal transportation and allocation of resources. The problem was formalized by the French mathematician Gaspard Monge in 1781.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

Volume of an <i>n</i>-ball Size of a mathematical ball

In geometry, a ball is a region in a space comprising all points within a fixed distance, called the radius, from a given point; that is, it is the region enclosed by a sphere or hypersphere. An n-ball is a ball in an n-dimensional Euclidean space. The volume of a n-ball is the Lebesgue measure of this ball, which generalizes to any dimension the usual volume of a ball in 3-dimensional space. The volume of a n-ball of radius R is where is the volume of the unit n-ball, the n-ball of radius 1.

In mathematics, Watson's lemma, proved by G. N. Watson, has significant application within the theory on the asymptotic behavior of integrals.

In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a single function see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system.

In representation theory of mathematics, the Waldspurger formula relates the special values of two L-functions of two related admissible irreducible representations. Let k be the base field, f be an automorphic form over k, π be the representation associated via the Jacquet–Langlands correspondence with f. Goro Shimura (1976) proved this formula, when and f is a cusp form; Günter Harder made the same discovery at the same time in an unpublished paper. Marie-France Vignéras (1980) proved this formula, when and f is a newform. Jean-Loup Waldspurger, for whom the formula is named, reproved and generalized the result of Vignéras in 1985 via a totally different method which was widely used thereafter by mathematicians to prove similar formulas.

References