Ramanujan's master theorem

Last updated

In mathematics, Ramanujan's Master Theorem, named after Srinivasa Ramanujan, [1] is a technique that provides an analytic expression for the Mellin transform of an analytic function.

Contents

Page from Ramanujan's notebook stating his Master theorem. Ramanujan's "Master Theorem" page.jpg
Page from Ramanujan's notebook stating his Master theorem.

The result is stated as follows:

If a complex-valued function has an expansion of the form

then the Mellin transform of is given by

where is the gamma function.

It was widely used by Ramanujan to calculate definite integrals and infinite series.

Higher-dimensional versions of this theorem also appear in quantum physics (through Feynman diagrams). [2]

A similar result was also obtained by Glaisher. [3]

Alternative formalism

An alternative formulation of Ramanujan's Master Theorem is as follows:

which gets converted to the above form after substituting and using the functional equation for the gamma function.

The integral above is convergent for subject to growth conditions on . [4]

Proof

A proof subject to "natural" assumptions (though not the weakest necessary conditions) to Ramanujan's Master theorem was provided by G. H. Hardy [5] (chapter XI) employing the residue theorem and the well-known Mellin inversion theorem.

Application to Bernoulli polynomials

The generating function of the Bernoulli polynomials is given by:

These polynomials are given in terms of the Hurwitz zeta function:

by for . Using the Ramanujan master theorem and the generating function of Bernoulli polynomials one has the following integral representation: [6]

which is valid for .

Application to the gamma function

Weierstrass's definition of the gamma function

is equivalent to expression

where is the Riemann zeta function.

Then applying Ramanujan master theorem we have:

valid for .

Special cases of and are

Application to Bessel functions

The Bessel function of the first kind has the power series

By Ramanujan's Master Theorem, together with some identities for the gamma function and rearranging, we can evaluate the integral

valid for .

Equivalently, if the spherical Bessel function is preferred, the formula becomes

valid for .

The solution is remarkable in that it is able to interpolate across the major identities for the gamma function. In particular, the choice of gives the square of the gamma function, gives the duplication formula, gives the reflection formula, and fixing to the evaluable or gives the gamma function by itself, up to reflection and scaling.

Bracket integration method

The bracket integration method (method of brackets) applies Ramanujan's Master Theorem to a broad range of integrals. [7] [8] The bracket integration method generates an integral of a series expansion, introduces simplifying notations, solves linear equations, and completes the integration using formulas arising from Ramanujan's Master Theorem. [8]

Generate an integral of a series expansion

This method transforms the integral to an integral of a series expansion involving M variables, , and S summation parameters, . A multivariate integral may assume this form. [2] :8

 

 

 

 

(B.0)

Apply special notations

 

 

 

 

(B.1)

 

 

 

 

(B.2)

 

 

 

 

(B.3)

 

 

 

 

(B.4)

 

 

 

 

(B.5)

Solve linear equations

 

 

 

 

(B.6)

 

 

 

 

(B.7)

Apply formulas

 

 

 

 

(B.8)

 

 

 

 

(B.9)

Mathematical basis

 

 

 

 

(B.10)

.

 

 

 

 

(B.11)

 

 

 

 

(B.12)

Example

Related Research Articles

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,

<span class="mw-page-title-main">Riemann zeta function</span> Analytic function in mathematics

The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as

<span class="mw-page-title-main">Residue theorem</span> Concept of complex analysis

In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula. The residue theorem should not be confused with special cases of the generalized Stokes' theorem; however, the latter can be used as an ingredient of its proof.

<span class="mw-page-title-main">Euler's constant</span> Constant value used in mathematics

Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:

<span class="mw-page-title-main">Harmonic number</span> Sum of the first n whole number reciprocals; 1/1 + 1/2 + 1/3 + ... + 1/n

In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers:

<span class="mw-page-title-main">Digamma function</span> Mathematical function

In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:

<span class="mw-page-title-main">Hurwitz zeta function</span> Special function in mathematics

In mathematics, the Hurwitz zeta function is one of the many zeta functions. It is formally defined for complex variables s with Re(s) > 1 and a ≠ 0, −1, −2, … by

In mathematics, the Poisson summation formula is an equation that relates the Fourier series coefficients of the periodic summation of a function to values of the function's continuous Fourier transform. Consequently, the periodic summation of a function is completely defined by discrete samples of the original function's Fourier transform. And conversely, the periodic summation of a function's Fourier transform is completely defined by discrete samples of the original function. The Poisson summation formula was discovered by Siméon Denis Poisson and is sometimes called Poisson resummation.

<span class="mw-page-title-main">Stable distribution</span> Distribution of variables which satisfies a stability property under linear combinations

In probability theory, a distribution is said to be stable if a linear combination of two independent random variables with this distribution has the same distribution, up to location and scale parameters. A random variable is said to be stable if its distribution is stable. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it.

<span class="mw-page-title-main">Stieltjes constants</span>

In mathematics, the Stieltjes constants are the numbers that occur in the Laurent series expansion of the Riemann zeta function:

<span class="mw-page-title-main">Barnes G-function</span>

In mathematics, the Barnes G-functionG(z) is a function that is an extension of superfactorials to the complex numbers. It is related to the gamma function, the K-function and the Glaisher–Kinkelin constant, and was named after mathematician Ernest William Barnes. It can be written in terms of the double gamma function.

In mathematics, a rational zeta series is the representation of an arbitrary real number in terms of a series consisting of rational numbers and the Riemann zeta function or the Hurwitz zeta function. Specifically, given a real number x, the rational zeta series for x is given by

In mathematics, Apéry's constant is the sum of the reciprocals of the positive cubes. That is, it is defined as the number

In mathematics, the Riemann zeta function is a function in complex analysis, which is also important in number theory. It is often denoted and is named after the mathematician Bernhard Riemann. When the argument is a real number greater than one, the zeta function satisfies the equation

In mathematics, the multiplication theorem is a certain type of identity obeyed by many special functions related to the gamma function. For the explicit case of the gamma function, the identity is a product of values; thus the name. The various relations all stem from the same underlying principle; that is, the relation for one special function can be derived from that for the others, and is simply a manifestation of the same identity in different guises.

In mathematics, Maass forms or Maass wave forms are studied in the theory of automorphic forms. Maass forms are complex-valued smooth functions of the upper half plane, which transform in a similar way under the operation of a discrete subgroup of as modular forms. They are eigenforms of the hyperbolic Laplace operator defined on and satisfy certain growth conditions at the cusps of a fundamental domain of . In contrast to modular forms, Maass forms need not be holomorphic. They were studied first by Hans Maass in 1949.

In statistics, the generalized Marcum Q-function of order is defined as

In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a single function see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system.

In representation theory of mathematics, the Waldspurger formula relates the special values of two L-functions of two related admissible irreducible representations. Let k be the base field, f be an automorphic form over k, π be the representation associated via the Jacquet–Langlands correspondence with f. Goro Shimura (1976) proved this formula, when and f is a cusp form; Günter Harder made the same discovery at the same time in an unpublished paper. Marie-France Vignéras (1980) proved this formula, when and f is a newform. Jean-Loup Waldspurger, for whom the formula is named, reproved and generalized the result of Vignéras in 1985 via a totally different method which was widely used thereafter by mathematicians to prove similar formulas.

References

  1. Berndt, B. (1985). Ramanujan's Notebooks, Part I. New York: Springer-Verlag.
  2. 1 2 3 4 González, Iván; Moll, V.H.; Schmidt, Iván (2011). "A generalized Ramanujan Master Theorem applied to the evaluation of Feynman diagrams". arXiv: 1103.0588 [math-ph].
  3. Glaisher, J.W.L. (1874). "A new formula in definite integrals". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 48 (315): 53–55. doi:10.1080/14786447408641072.
  4. 1 2 3 Amdeberhan, Tewodros; Gonzalez, Ivan; Harrison, Marshall; Moll, Victor H.; Straub, Armin (2012). "Ramanujan's Master Theorem". The Ramanujan Journal. 29 (1–3): 103–120. CiteSeerX   10.1.1.232.8448 . doi:10.1007/s11139-011-9333-y. S2CID   8886049.
  5. Hardy, G.H. (1978). Ramanujan: Twelve lectures on subjects suggested by his life and work (3rd ed.). New York, NY: Chelsea. ISBN   978-0-8284-0136-4.
  6. Espinosa, O.; Moll, V. (2002). "On some definite integrals involving the Hurwitz zeta function. Part 2". The Ramanujan Journal. 6 (4): 449–468. arXiv: math/0107082 . doi:10.1023/A:1021171500736. S2CID   970603.
  7. 1 2 3 Gonzalez, Ivan; Moll, Victor H. (July 2010). "Definite integrals by the method of brackets. Part 1,". Advances in Applied Mathematics. 45 (1): 50–73. doi:10.1016/j.aam.2009.11.003.
  8. 1 2 3 4 5 Gonzalez, Ivan; Jiu, Lin; Moll, Victor H. (1 January 2020). "An extension of the method of brackets. Part 2". Open Mathematics. 18 (1): 983–995. arXiv: 1707.08942 . doi: 10.1515/math-2020-0062 . ISSN   2391-5455.