Raymond Freymann is an engineering professor and researcher, born on 30 May 1952 in Esch-sur-Alzette, Luxembourg, and has authored or co-authored more than 150 scientific publications. He has served BMW for 25 years and held the position of CEO of BMW Group Research and Technology from 2003 to 2011 [1]
Raymond Freymann graduated in 1970 from the Lycée de Garcons in Esch-sur Alzette, Luxembourg. He performed his study in mechanical engineering at the Technical University of Braunschweig in Germany. He got his engineering degree in 1976 with a major in aerospace technologies. He obtained his doctor of engineering degree from the Technical University of Braunschweig in 1981 for the work he has performed at the Institute of Aeroelasticity at the DLR in Göttingen (Germany). Subsequently, he has been working as a scientist at the Flight Dynamics Laboratory at Wright Patterson Air Force Base in Dayton (Ohio). His career at BMW Group started in 1986 as head of the structural dynamics and acoustics division at the BMW Development and Innovation Center in Munich (Germany). Later he was appointed as director of the Vehicle Physics department and was nominated director of Vehicle Research in 2000. From 2003 to 2011 he was acting as CEO of BMW Group Research and Technology (BMW Forschung und Technik GmbH).
Raymond Freymann acquired his habilitation from the Technical University of Munich (TUM) in 2000 and was nominated as honorary professor at the TU Munich in 2002.
Raymond Freymann served in a variety of scientific and advisory committees, such as the NATO Advisory Group for Aerospace Research and Development (AGARD) from 1981 to 1996, the American Institute of Aeronautics and Astronautics (AIAA) from 1987 to 1991, the Society of Automotive Engineers (SAE) from 1998 to 2001, the British Institution of Mechanical Engineers (ImechE) from 1997 to 2002, the Feldafinger Kreis in Germany from 2008 to 2011, the Comité Supérieur de la Recherche et de l´Innovation (CSRI) in Luxembourg from 2008 to 2011. From 2015 to 2019 he was acting as chairman of the supervisory board of EIT Digital, a Knowledge and Innovation Community (KIC) of the European Institute of Technology (EIT). Since 2019 he is supporting the Gesellschaft zur Förderung des Technologietransfers (GFFT) in Germany as an honorary member.
Major technical accomplishments were the many contributions to advanced aeroelastically optimized and actively controlled aircraft configurations, the development of an actively damped aircraft landing gear system in 1985, a novel approach for derivation of the generalized equations of motion of coupled structural-acoustic systems in 1992 forming the basis of the commercial software code CDH-VAO, [2] the pioneering and development of the Holographic Modal Analysis testing tool (HOLOMODAL) [3] in 1994, the development of a waste heat recovery systems for internal combustion engines (BMW Turbosteamer) in 2000, the development of the hydrogen speed record vehicle BMW H2R in 2004, [4] the visionary approach for the future deployment of a hydrogen based energy supply economy making use of liquid organic hydrides (LOHC) as a fuel (in 2005).
Dr. Freymann has authored or co-authored more than 150 scientific publications in the technical fields of aeroelasticity, active control systems, structural dynamics, servo-hydraulics, testing and instrumentation, acoustics, hydrogen technology (CleanEnergy), energy management (EfficientDynamics), human-machine-interface, driver assistance and active safety (ConnectedDrive). [5]
A Method for Determining the Aeroelastic Behavior of Aircraft with Active Control Systems. European Space Agency Technical Translation, ESA-TT-719, 1982. Doctor Thesis.
Advanced Numerical and Experimental Methods in the Field of Vehicle Structural Acoustics. Hieronymus München, 2000, ISBN 3-89791-172-8, Habilitation Thesis.
Holographic Modal Analysis, Laser in Research and Engineering, Springer Verlag Berlin, pp. 530–542, 1996
Strukturdynamik – Ein anwendungsorientiertes Lehrbuch (Structural Dynamics – An Application Oriented Textbook). Springer Verlag, 2011, ISBN 978-3-642-19697-3. Lecture course given at the Technical University of Munich.
Dynamic Interactions Between Active Control Systems and a Flexible Aircraft Structure. AIAA CP 864(1986), pp. 517–524; Journal of Guidance, Control, and Dynamics, Vol. 10, Nr. 5 (1987), pp. 447–452; Aeronautika Technika, UDSSR, July 1988, pp. 92–99.
An Active Control Landing Gear for the Alleviation of Aircraft Taxi Ground Loads. Zeitschrift für Flugwissenschaften und Weltraumforschung, ZFW 11 (1987),Band 2, pp. 97–105.
An Energetic Approach for Derivation of the Generalized Equations of Motion of Coupled Structural-Acoustic Systems. AIAA CP 942 (1994), pp. 1868–1880.
The Turbosteamer: A System Introducing the Principle of Cogeneration in Automotive Applications. Motortechnische Zeitschrift, MTZ 05/2008, Jahrgang 69, pp. 404–412.
Potentiale von alternativen Wasserstofftechnologien. VDI-Berichte: Innovative Fahrzeugantriebe, 2008, Vol. 2030, pp. 273–298.
Aeroelasticity is the branch of physics and engineering studying the interactions between the inertial, elastic, and aerodynamic forces occurring while an elastic body is exposed to a fluid flow. The study of aeroelasticity may be broadly classified into two fields: static aeroelasticity dealing with the static or steady state response of an elastic body to a fluid flow, and dynamic aeroelasticity dealing with the body's dynamic response.
The Grumman X-29 was an American experimental aircraft that tested a forward-swept wing, canard control surfaces, and other novel aircraft technologies. The X-29 was developed by Grumman, and the two built were flown by NASA and the United States Air Force. The aerodynamic instability of the X-29's airframe required the use of computerized fly-by-wire control. Composite materials were used to control the aeroelastic divergent twisting experienced by forward-swept wings, and to reduce weight. The aircraft first flew in 1984, and two X-29s were flight tested through 1991.
The American Institute of Aeronautics and Astronautics (AIAA) is a professional society for the field of aerospace engineering. The AIAA is the U.S. representative on the International Astronautical Federation and the International Council of the Aeronautical Sciences. In 2015, it had more than 30,000 members among aerospace professionals worldwide.
US Air Force Flight Dynamics Laboratory is located on Wright-Patterson Air Force Base and is part of the Air Force Wright Laboratory. The Laboratory was eventually merged into the Air Force Research Laboratory in 1997.
The X-53 Active Aeroelastic Wing (AAW) development program is a completed American research project that was undertaken jointly by the Air Force Research Laboratory (AFRL), Boeing Phantom Works and NASA's Dryden Flight Research Center, where the technology was flight tested on a modified McDonnell Douglas F/A-18 Hornet. Active Aeroelastic Wing Technology is a technology that integrates wing aerodynamics, controls, and structure to harness and control wing aeroelastic twist at high speeds and dynamic pressures. By using multiple leading and trailing edge controls like "aerodynamic tabs", subtle amounts of aeroelastic twist can be controlled to provide large amounts of wing control power, while minimizing maneuver air loads at high wing strain conditions or aerodynamic drag at low wing strain conditions. This program was the first full-scale proof of AAW technology.
Jan Roskam was the Deane E. Ackers Distinguished Professor of Aerospace Engineering at the University of Kansas. He is the author of eleven books on airplane design and flight dynamics and over 160 papers on the topics of aircraft aerodynamics, performance, design and flight controls. He founded the company DARcorporation with Willem Anemaat.
Jerome Pearson was an American engineer and space scientist best known for his work on space elevators, including a lunar space elevator. He was president of STAR, Inc., and has developed aircraft and spacecraft technology for the United States Air Force, DARPA, and NASA. He held several patents and was the author of nearly 100 publications in aircraft, spacecraft, electrodynamic tethers, SETI, and global climate control.
In fluid dynamics, the Küssner effect describes the unsteady aerodynamic forces on an airfoil or hydrofoil caused by encountering a transverse gust. This is directly related to the Küssner function, used in describing the effect. Both the effect and function are named after Hans Georg Küssner (1900–1984), a German aerodynamics engineer.
Aerospace engineering is the primary field of engineering concerned with the development of aircraft and spacecraft. It has two major and overlapping branches: aeronautical engineering and astronautical engineering. Avionics engineering is similar, but deals with the electronics side of aerospace engineering.
Boris Laschka is a German fluid dynamics scientist and aeronautical engineer known for his work in unsteady aerodynamics, in applied aerodynamics, in aeroelasticity, and by his participation in the development of several experimental, civil, and military airplanes, e.g. VTOL VJ 101, Airbus A300 and A310, CN 235 and N 250 (Indonesia) and Tornado aircraft.
Charbel Farhat is the Vivian Church Hoff Professor of Aircraft Structures in the School of Engineering and the inaugural James and Anna Marie Spilker Chair of the Department of Aeronautics and Astronautics, at Stanford University. He is also Professor of Mechanical Engineering, Professor in the Institute for Computational and Mathematical Engineering, and Director of the Stanford-King Abdulaziz City for Science and Technology Center of Excellence for Aeronautics and Astronautics. He currently serves on the Space Technology Industry-Government-University Roundtable.
H. Norman Abramson is an American engineer, scientist, retired Executive Vice President of the Southwest Research Institute at the University of Texas at Austin, and former manager and principal investigator in several NAE and NRC research projects.
Holt Ashley was an American aeronautical engineer notable for his seminal research of aeroelasticity.
The service-oriented computing environment (SORCER) is a distributed computing platform implemented in Java. It allows writing network-programs that operate on wrapped applications (services) to spread across the network. SORCER is often utilized in scenarios similar to those where grids are used in order to run parallel tasks.
ACTRAN is a finite element-based computer aided engineering software modeling the acoustic behavior of mechanical systems and parts. Actran is being developed by Free Field Technologies, a Belgian software company founded in 1998 by Jean-Pierre Coyette and Jean-Louis Migeot. Free Field Technologies is a wholly owned subsidiary of the MSC Software Corporation since 2011. Free Field Technologies and MSC Software are part of Hexagon AB since 2017.
Joseph Majdalani is an Lebanese-American professor of Mechanical and Aerospace Engineering. He began his career at Marquette University, before serving as both the Jack D. Whitfield Professor of High Speed Flows and Arnold Chair of Excellence at the University of Tennessee Space Institute. He then served as the Auburn Alumni Engineering Council Endowed Professor and Chair, and is currently the Hugh and Loeda Francis Chair of Excellence in Aerospace Engineering at Auburn University.
Guru Guruswamy is an American engineer working as Principal Scientist at Ames Research Center since 1988. He pioneered research in the area of computational aeroelasticity that involves Unsteady Aerodynamics, Finite Element Methods, Computational Fluid Dynamics, Parallel Computing and Problem Solving Environment. His innovative research was utilized in the first commercial 3-D computational aeroelasticity software developed by a major aerospace industry. The aeroelasticity legend Holt Ashley extensively referred to Guruswamy's research in his classical review paper. In 1988 he demonstrated the unique use of Transonic Small Perturbation based CFD for designing active controls to increase the safety of aircraft. It was followed by a break through development of Euler flow equations based Computational Aeroelasticy. It was cited by another Aeroelasticity legend John Dugundji of MIT as an important milestone in Aeroelasticity. A google search shows about 150 researchers took advantage Guruswamy's work based on the Euler equations for follow-up developments.
The General Dynamics–Boeing AFTI/F-111A Aardvark was a research aircraft modified from a General Dynamics F-111 Aardvark to test a Boeing-built supercritical mission adaptive wing (MAW). This MAW, in contrast to standard control surfaces, could smoothly change the shape of its airfoil in flight.
Duane Torrance "Mac" McRuer was a scientist, engineer, and expert in aircraft flight and other vehicle controls who cofounded Systems Technology Inc. in 1957. He made many contributions to the theory and practical application of human-machine interaction and control.
Carlos E. S. Cesnik is a Brazilian-American aerospace engineer, academic, and author. He is the Clarence L. (Kelly) Johnson Collegiate Professor of Aerospace Engineering and the founding Director of the Active Aeroelasticity and Structures Research Laboratory at the University of Michigan. He also directs the Airbus-Michigan Center for Aero-Servo-Elasticity of Very Flexible Aircraft (CASE-VFA).