Reactions on surfaces

Last updated

Reactions on surfaces are reactions in which at least one of the steps of the reaction mechanism is the adsorption of one or more reactants. The mechanisms for these reactions, and the rate equations are of extreme importance for heterogeneous catalysis. Via scanning tunneling microscopy, it is possible to observe reactions at the solid gas interface in real space, if the time scale of the reaction is in the correct range. [1] [2] Reactions at the solid–gas interface are in some cases related to catalysis.

Contents

Simple decomposition

If a reaction occurs through these steps:

A + S ⇌ AS → Products

where A is the reactant and S is an adsorption site on the surface and the respective rate constants for the adsorption, desorption and reaction are k1, k−1 and k2, then the global reaction rate is:

where:

is highly related to the total surface area of the adsorbent: the greater the surface area, the more sites and the faster the reaction. This is the reason why heterogeneous catalysts are usually chosen to have great surface areas (in the order of a hundred m2/gram)

If we apply the steady state approximation to AS, then:

so

and

The result is equivalent to the Michaelis–Menten kinetics of reactions catalyzed at a site on an enzyme. The rate equation is complex, and the reaction order is not clear. In experimental work, usually two extreme cases are looked for in order to prove the mechanism. In them, the rate-determining step can be:

The order respect to A is 1. Examples of this mechanism are N2O on gold and HI on platinum

The last expression is the Langmuir isotherm for the surface coverage. The adsorption equilibrium constant , and the numerator and denominator have each been divided by . The overall reaction rate becomes .

Depending on the concentration of the reactant the rate changes:

  • Low concentrations, then , that is to say a first order reaction in component A.
  • High concentration, then . It is a zeroth order reaction in component A.

Bimolecular reaction

Langmuir–Hinshelwood mechanism

In this mechanism, suggested by Irving Langmuir in 1921 and further developed by Cyril Hinshelwood in 1926, two molecules adsorb on neighboring sites and the adsorbed molecules undergo a bimolecular reaction: [3]

A + S ⇌ AS
B + S ⇌ BS
AS + BS → Products

The rate constants are now ,,, and for adsorption/desorption of A, adsorption/desorption of B, and reaction. The rate law is:

Proceeding as before we get , where is the fraction of empty sites, so . Let us assume now that the rate limiting step is the reaction of the adsorbed molecules, which is easily understood: the probability of two adsorbed molecules colliding is low. Then , with , which is nothing but Langmuir isotherm for two adsorbed gases, with adsorption constants and . Calculating from and we finally get

.

The rate law is complex and there is no clear order with respect to either reactant, but we can consider different values of the constants, for which it is easy to measure integer orders:

That means that , so . The order is one with respect to each reactant, and the overall order is two.

In this case , so . The reaction order is 1 with respect to B. There are two extreme possibilities for the order with respect to A:

  1. At low concentrations of A, , and the order is one with respect to A.
  2. At high concentrations, . The order is minus one with respect to A. The higher the concentration of A, the slower the reaction goes, in this case we say that A inhibits the reaction.

One of the reactants has very high adsorption and the other one doesn't adsorb strongly.

, so . The reaction order is 1 with respect to B and −1 with respect to A. Reactant A inhibits the reaction at all concentrations.

The following reactions follow a Langmuir–Hinshelwood mechanism: [4]

Langmuir–Rideal mechanism

In this mechanism, proposed in 1922 by Irving Langmuir and later expanded upon by Eric Rideal, only one of the molecules adsorbs and the other one reacts with it directly from the gas phase, without adsorbing ("nonthermal surface reaction"):

A(g) + S(s) ⇌ AS(s)
AS(s) + B(g) → Products

Constants are and and rate equation is . Applying steady state approximation to AS and proceeding as before (considering the reaction the limiting step once more) we get . The order is one with respect to B. There are two possibilities, depending on the concentration of reactant A:

  • At low concentrations of A, , and the order is one with respect to A.
  • At high concentrations of A, , and the order is zero with respect to A.

The following reactions follow an Langmuir–Rideal mechanism: [4]

The Langmuir-Rideal mechanism is often, incorrectly, attributed to Dan Eley as the Eley-Rideal mechanism. [5] The actual Eley-Rideal mechanism, studied in the thesis of Dan Eley and proposed by Eric Rideal in 1939, was the reaction between a chemisorbed and a physisorbed molecule. [6] As opposed to the Langmuir-Rideal mechanism, in this mechanism the physisorbed molecule is in thermal equilibrium with the surface.

See also

Related Research Articles

In a chemical reaction, chemical equilibrium is the state in which both the reactants and products are present in concentrations which have no further tendency to change with time, so that there is no observable change in the properties of the system. This state results when the forward reaction proceeds at the same rate as the reverse reaction. The reaction rates of the forward and backward reactions are generally not zero, but they are equal. Thus, there are no net changes in the concentrations of the reactants and products. Such a state is known as dynamic equilibrium.

<span class="mw-page-title-main">Fick's laws of diffusion</span> Mathematical descriptions of molecular diffusion

Fick's laws of diffusion describe diffusion and were first posited by Adolf Fick in 1855 on the basis of largely experimental results. They can be used to solve for the diffusion coefficient, D. Fick's first law can be used to derive his second law which in turn is identical to the diffusion equation.

<span class="mw-page-title-main">Adsorption</span> Phenomenon of surface adhesion

Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the adsorbate on the surface of the adsorbent. This process differs from absorption, in which a fluid is dissolved by or permeates a liquid or solid. While adsorption does often precede absorption, which involves the transfer of the absorbate into the volume of the absorbent material, alternatively, adsorption is distinctly a surface phenomenon, wherein the adsorbate does not penetrate through the material surface and into the bulk of the adsorbent. The term sorption encompasses both adsorption and absorption, and desorption is the reverse of sorption.

<span class="mw-page-title-main">Reaction rate</span> Speed at which a chemical reaction takes place

The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. Reaction rates can vary dramatically. For example, the oxidative rusting of iron under Earth's atmosphere is a slow reaction that can take many years, but the combustion of cellulose in a fire is a reaction that takes place in fractions of a second. For most reactions, the rate decreases as the reaction proceeds. A reaction's rate can be determined by measuring the changes in concentration over time.

Chemical kinetics, also known as reaction kinetics, is the branch of physical chemistry that is concerned with understanding the rates of chemical reactions. It is different from chemical thermodynamics, which deals with the direction in which a reaction occurs but in itself tells nothing about its rate. Chemical kinetics includes investigations of how experimental conditions influence the speed of a chemical reaction and yield information about the reaction's mechanism and transition states, as well as the construction of mathematical models that also can describe the characteristics of a chemical reaction.

<span class="mw-page-title-main">Heterogeneous catalysis</span> Type of catalysis involving reactants & catalysts in different phases of matter

Heterogeneous catalysis is catalysis where the phase of catalysts differs from that of the reagents or products. The process contrasts with homogeneous catalysis where the reagents, products and catalyst exist in the same phase. Phase distinguishes between not only solid, liquid, and gas components, but also immiscible mixtures, or anywhere an interface is present.

Desorption is the physical process where adsorbed atoms or molecules are released from a surface into the surrounding vacuum or fluid. This occurs when a molecule gains enough energy to overcome the activation barrier and the binding energy that keep it attached to the surface.

In chemical kinetics, a reaction rate constant or reaction rate coefficient is a proportionality constant which quantifies the rate and direction of a chemical reaction by relating it with the concentration of reactants.

In chemistry, the rate equation is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters only. For many reactions, the initial rate is given by a power law such as

In chemistry, molecularity is the number of molecules that come together to react in an elementary (single-step) reaction and is equal to the sum of stoichiometric coefficients of reactants in the elementary reaction with effective collision and correct orientation. Depending on how many molecules come together, a reaction can be unimolecular, bimolecular or even trimolecular.

Brunauer–Emmett–Teller (BET) theory aims to explain the physical adsorption of gas molecules on a solid surface and serves as the basis for an important analysis technique for the measurement of the specific surface area of materials. The observations are very often referred to as physical adsorption or physisorption. In 1938, Stephen Brunauer, Paul Hugh Emmett, and Edward Teller presented their theory in the Journal of the American Chemical Society. BET theory applies to systems of multilayer adsorption that usually utilizes a probing gas (called the adsorbate) that does not react chemically with the adsorptive (the material upon which the gas attaches to) to quantify specific surface area. Nitrogen is the most commonly employed gaseous adsorbate for probing surface(s). For this reason, standard BET analysis is most often conducted at the boiling temperature of N2 (77 K). Other probing adsorbates are also utilized, albeit less often, allowing the measurement of surface area at different temperatures and measurement scales. These include argon, carbon dioxide, and water. Specific surface area is a scale-dependent property, with no single true value of specific surface area definable, and thus quantities of specific surface area determined through BET theory may depend on the adsorbate molecule utilized and its adsorption cross section.

The sticking probability is the probability that molecules are trapped on surfaces and adsorb chemically. From Langmuir's adsorption isotherm, molecules cannot adsorb on surfaces when the adsorption sites are already occupied by other molecules, so the sticking probability can be expressed as follows:

<span class="mw-page-title-main">Hill equation (biochemistry)</span> Diagram showing the proportion of a receptor bound to a ligand

In biochemistry and pharmacology, the Hill equation refers to two closely related equations that reflect the binding of ligands to macromolecules, as a function of the ligand concentration. A ligand is "a substance that forms a complex with a biomolecule to serve a biological purpose", and a macromolecule is a very large molecule, such as a protein, with a complex structure of components. Protein-ligand binding typically changes the structure of the target protein, thereby changing its function in a cell.

<span class="mw-page-title-main">Transition state theory</span> Theory describing the reaction rates of elementary chemical reactions

In chemistry, transition state theory (TST) explains the reaction rates of elementary chemical reactions. The theory assumes a special type of chemical equilibrium (quasi-equilibrium) between reactants and activated transition state complexes.

In materials science, segregation is the enrichment of atoms, ions, or molecules at a microscopic region in a materials system. While the terms segregation and adsorption are essentially synonymous, in practice, segregation is often used to describe the partitioning of molecular constituents to defects from solid solutions, whereas adsorption is generally used to describe such partitioning from liquids and gases to surfaces. The molecular-level segregation discussed in this article is distinct from other types of materials phenomena that are often called segregation, such as particle segregation in granular materials, and phase separation or precipitation, wherein molecules are segregated in to macroscopic regions of different compositions. Segregation has many practical consequences, ranging from the formation of soap bubbles, to microstructural engineering in materials science, to the stabilization of colloidal suspensions.

<span class="mw-page-title-main">Langmuir adsorption model</span> Model describing the adsorption of a mono-layer of gas molecules on an ideal flat surface

The Langmuir adsorption model explains adsorption by assuming an adsorbate behaves as an ideal gas at isothermal conditions. According to the model, adsorption and desorption are reversible processes. This model even explains the effect of pressure; i.e., at these conditions the adsorbate's partial pressure is related to its volume V adsorbed onto a solid adsorbent. The adsorbent, as indicated in the figure, is assumed to be an ideal solid surface composed of a series of distinct sites capable of binding the adsorbate. The adsorbate binding is treated as a chemical reaction between the adsorbate gaseous molecule and an empty sorption site S. This reaction yields an adsorbed species with an associated equilibrium constant :

Adsorption is the adhesion of ions or molecules onto the surface of another phase. Adsorption may occur via physisorption and chemisorption. Ions and molecules can adsorb to many types of surfaces including polymer surfaces. A polymer is a large molecule composed of repeating subunits bound together by covalent bonds. In dilute solution, polymers form globule structures. When a polymer adsorbs to a surface that it interacts favorably with, the globule is essentially squashed, and the polymer has a pancake structure.

The potential theory of Polanyi, also called Polanyi adsorption potential theory, is a model of adsorption proposed by Michael Polanyi where adsorption can be measured through the equilibrium between the chemical potential of a gas near the surface and the chemical potential of the gas from a large distance away. In this model, he assumed that the attraction largely due to Van Der Waals forces of the gas to the surface is determined by the position of the gas particle from the surface, and that the gas behaves as an ideal gas until condensation where the gas exceeds its equilibrium vapor pressure. While the adsorption theory of Henry is more applicable in low pressure and BET adsorption isotherm equation is more useful at from 0.05 to 0.35 P/Po, the Polanyi potential theory has much more application at higher P/Po (~0.1–0.8).

In chemistry, catalytic resonance theory was developed to describe the kinetics of reaction acceleration using dynamic catalyst surfaces. Catalytic reactions occur on surfaces that undergo variation in surface binding energy and/or entropy, exhibiting overall increase in reaction rate when the surface binding energy frequencies are comparable to the natural frequencies of the surface reaction, adsorption, and desorption.

Dissociative adsorption is a process in which a molecule adsorbs onto a surface and simultaneously dissociates into two or more fragments. This process is the basis of many applications, particularly in heterogeneous catalysis reactions. The dissociation involves cleaving of the molecular bonds in the adsorbate, and formation of new bonds with the substrate.

References

  1. Wintterlin, J.; Völkening, S.; Janssens, T. V. W.; Zambelli, T.; Ertl, G. (1997). "Atomic and Macroscopic Reaction Rates of a Surface-Catalyzed Reaction". Science . 278 (5345): 1931–4. Bibcode:1997Sci...278.1931W. doi:10.1126/science.278.5345.1931. PMID   9395392.
  2. Waldmann, T.; et al. (2012). "Oxidation of an Organic Adlayer: A Bird's Eye View". Journal of the American Chemical Society . 134 (21): 8817–8822. doi:10.1021/ja302593v. PMID   22571820.
  3. Keith J. Laidler and John H. Meiser Physical Chemistry (Benjamin/Cummings 1982) p.780 ISBN   0-8053-5682-7
  4. 1 2 Grolmuss, Alexander. "A 7: Mechanismen in der heterogenen Katalyse" [A7: Mechanisms in Heterogeneous Catalysis] (in German).
  5. Prins, R. (2018-06-01). "Eley–Rideal, the Other Mechanism". Topics in Catalysis. 61 (9): 714–721. doi:10.1007/s11244-018-0948-8. ISSN   1572-9028.
  6. Rideal, E. K. (January 1939). "A note on a simple molecular mechanism for heterogeneous catalytic reactions". Mathematical Proceedings of the Cambridge Philosophical Society. 35 (1): 130–132. doi:10.1017/S030500410002082X. ISSN   1469-8064.