Reality mining

Last updated

Reality mining is the collection and analysis of machine-sensed environmental data pertaining to human social behavior, with the goal of identifying predictable patterns of behavior. In 2008, MIT Technology Review called it one of the "10 technologies most likely to change the way we live." [1]

Contents

Reality mining studies human interactions based on the usage of wireless devices such as mobile phones and GPS systems providing a more accurate picture of what people do, where they go, and with whom they communicate with rather than from more subjective sources such as a person's own account. Reality mining is one aspect of digital footprint analysis. [2]

Reality Mining is using Big Data to conduct research and analyze how people interact with technology everyday to build systems that allow for positive change from the individual to the global community. Reality Mining also deals with data exhaust .

Individual Scale (1 person)

Individuals use mobile phones, tablets, laptops, cameras, and any device connected to the internet for a variety of purposes, therefore creating a variety of data from GPS locations to frequently asked questions on Google. Mobile phones carry so much data about the individual that now phones can suggest restaurants based on our searches, visited places, book preference, and even guess the ends of sentences we type. A simple application of Reality Mining is listening to voices and understanding speech patterns to diagnose medical problems such as the simple flu to even early onset Parkinson's. More powerful phones also allow for calendar customization and event tracking which display behaviors within individuals, what is deemed important enough to track. Social websites also allow researchers to view snapshots of a person's life by following status updates on Facebook or tweets from Twitter. Even more specific, a recent app called Snapchat allows users to post videos, pictures, or even live streams of exactly what they're doing when they're doing it, strong indicators of behaviors and interactions with the world. In 2004, MIT conducted the Reality Mining Project which gave 100 MIT students a Nokia 6600 which was tracked in a variety of ways by the researchers. The Cell Tower ID #'s (a very cheap and unobtrusive way to measure location), the status of the phone (charging or idle), and any use of the phone's applications (games, web surfing, etc...). They found that by collecting this kind of data, they could predict with high accuracy the behaviors of the students, for example, if one of the students woke up on a Saturday morning at 10 AM, the researchers could predict what they were going to do that day using "eigenbehaviors". This new way of understanding data opened up doors for new research and possibly even larger survey research with detailed and accurate statistics. There are hundreds of websites offering software for mobile phones that will track just about everything the phone does, useful for worried parents or people who want to increase their personal productivity. This data is then uploaded to a server and can be accessed at any time.

Although a lot of data can be collected from personal devices, they only make up a part of a person's life. Reality Miners can also use biometric devices to measure physical health and activity. There are many devices like this such as the Fitbit, Nike+, and Polar and Garmin GPS watches. There is even an app called Sleep Cycle for iPhone and Android users that measures sleep quality, which includes the amount of sleep and even optimal alarm settings. Using this data, Reality Miners may be able to measure one's actual health and processes that allow us to function (or dysfunction). Heart attacks generally don't have any longitudinal indicators, but using all this data or even when a person engages in Lifelogging can create date useful to the medical field and track the lifestyles of those who undergo heart attacks to then create preventative guidelines. There are several ways to start Lifelogging, for instance Google has its own device called Google Glass that has a Heads-Up-Display (HUD), a microphone, a processor, and a camera. These are all ways to log information in specific directories.

Community Scale (10 to 1,000 people)

The way researchers have started to observe and record behaviors in large groups was by using RFID badges. Data is also recorded in work places using Knowledge Management Systems that try to improve worker productivity and efficiency, although a short-coming of this is the inability to converge the social and technological cultures of the work place, therefore providing incomplete behavioral data. Another way to measure larger groups of people in a community is through conference attendance. This data allows researchers to know where participants are from, ethnic demographics, and the actual number of people attending the event. Some conferences use smart-badges with more functions than the standard RFID badges. Companies like Microsoft and IBM have used them to record the number of people they interact with during the conference and allow people to answer survey questions. The smart-badges also record vocal interactions and when attendees are at certain booths and can even alert booth workers when certain profiles enter within a certain range of the booth. Smart-badges have obvious advantages for gathering data for reality miners. In 2009, a company called nTag, which was then acquired by Alliance Technology used nTag technology which allows for users to even be notified whom to talk to and its able to exchange business cards electronically. Another type of data reality miners are looking are climate and environmental information. They collect data from neighborhoods by employing air-quality sensors which records carbon dioxide and nitrogen oxides as well as the general climate. Information like this could help policy makers decide whether to act or not or to see progress. Another way to collect data about the surrounding is through Project Noah. Project Noah was an effort to collect data on types of plant species by geotagging pictures of plants and fungi people upload, allowing users to see the kind of ecosystems users live in. This helps schools and students who want to collect data for projects, but also for bird-watchers to know what kind of birds are in the area.

City Scale (1,000 to 1,000,000 people)

In general terms for this section, a city is defined by 1,000 to 1,000,000 people. One way data is collected on a city scale is through collecting data on traffic with traffic signals and speed cameras. Data can also be collected from police reports and road scanners as well as GPS from mobile applications. Using this kind of traffic data, cities can create routes that would best allow for efficient movement and flow of traffic. A company called Inrix, started in 2010, has been compiling data on traffic and buys data from bridge operators and other transportation systems. It uses this data to predict traffic routes and time of congestion. Another way traffic can be monitored is through bluetooth technology, which is a technology that Inrix does not consider. The University of Maryland completed a project in 2012 that demonstrated that two Bluetooth sensors permanently placed two miles apart could accurately detect traffic speeds. [3] [4] All of this combined can be created to make route-suggestion algorithms to help people get to and from places in an efficient matter that, additionally, the route can update itself in real time using these type of sensors and information. Notable start-up, now a subsidiary of google, Waze, which also collected data from users (anonymously) who reported accidents and this game them in-app currencies and rewards. For crime on the city scale, the first way to collect and view data is through historical research of previous reports within any area. Now, more complex algorithms automatically place officers in places of high crime rates before any actual crime has been committed. Since 2005, the Memphis Police Department has been using a program called Blue CRUSH (Criminal Reduction Utilization Statistical History) which uses the police reports and uses heat maps to distinguish between high and low areas of crime. This program updates itself weekly and allows to the police department to change tactics accordingly. Using this kind of data will allow police departments to interact with the society in a much more meaningful way, also allowing preventative work to be done rather than rehabilitative work.

National Scale (1,000,000 to 100,000,000 people)

On the national scale, government play a much larger role. Census data are by far the easiest to acquire. Many nations make their census findings public via websites from which data can be downloaded and visualized for further analysis. "In addition, the World Bank conducts international surveys and compiles census data from all participating nations— a sort of one-stop shop for information on its member countries. These data are publicly accessible: they can be downloaded and independently sorted and analyzed. Importantly, the World Bank offers an open API that allows programmers to integrate various data into software applications. Using World Bank data, Google has integrated a simple visualization tool into its search results; a search query on the population of Botswana will pull up the number, the dated World Bank source, and a graph showing population change over decades". [5] Another way to collect data is through call data record (or call detail record) which is just a log of phone calls and texts with information such as time and location of both the caller or sender and the recipient. CDR's allow phone companies to view human mobility trends. Major data companies like Google, Facebook, and Twitter also allow researchers to track cultural trends and even the when/where of the allocation of resources in time of natural disasters.

Global Scale (100,000,000 to 7,000,000,000 people)

The biggest worry for the world is the spread of disease and is one of reality mining's best applications. With globalization, the ability to travel is unprecedented compared to previous histories. The United Nations has created an agenda called the Millennium Development Goals (MDG) which are eight goals that aim to improve the world. They collect population data, the first step to allowing for policy making on disease control, nations must first collect data on air travel as billions of people travel by air each year and sea travel. Air travel carries more people each year than sea shipments, but the primary reason for collecting data on shipments is that shipments often carry pests that carry diseases, food-borne illnesses, and sometimes invasive species of plant and animal. The idea of managing and collecting seems monumental, but the World Bank has already started which helps statistical software like MAPS which stands for Marrakech Action Plan for Statistics. MAPS aims to complete six objectives, which include these three;

For people traveling on flights, a source of data is the International Air Transportation Association (IATA) which has been collecting data on about 90% of global air traffic on a monthly basis since 2000. This data allowed researchers and professionals to view the ability of disease to spread from certain location on Earth. Ships carry about 90% of global trade; in 2001, the Automatic Identification system was implemented to record the "comings and goings of sea traffic".

See also

Related Research Articles

Ubiquitous computing is a concept in software engineering, hardware engineering and computer science where computing is made to appear seamlessly anytime and everywhere. In contrast to desktop computing, ubiquitous computing implies use on any device, in any location, and in any format. A user interacts with the computer, which can exist in many different forms, including laptop computers, tablets, smart phones and terminals in everyday objects such as a refrigerator or a pair of glasses. The underlying technologies to support ubiquitous computing include the Internet, advanced middleware, kernels, operating systems, mobile codes, sensors, microprocessors, new I/Os and user interfaces, computer networks, mobile protocols, global navigational systems, and new materials.

<span class="mw-page-title-main">Wearable computer</span> Small computing device worn on the body

A wearable computer, also known as a body-borne computer, is a computing device worn on the body. The definition of 'wearable computer' may be narrow or broad, extending to smartphones or even ordinary wristwatches.

Location-based service (LBS) is a general term denoting software services which use geographic data and information to provide services or information to users. LBS can be used in a variety of contexts, such as health, indoor object search, entertainment, work, personal life, etc. Commonly used examples of location-based services include navigation software, social networking services, location-based advertising, and tracking systems. LBS can also include mobile commerce when taking the form of coupons or advertising directed at customers based on their current location. LBS also includes personalized weather services and even location-based games.

<span class="mw-page-title-main">Surveillance</span> Monitoring something for the purposes of influencing, protecting, or suppressing it

Surveillance is the monitoring of behavior, many activities, or information for the purpose of information gathering, influencing, managing, or directing. This can include observation from a distance by means of electronic equipment, such as closed-circuit television (CCTV), or interception of electronically transmitted information like Internet traffic. Increasingly, governments may also obtain consumer data through the purchase of online information, effectively expanding surveillance capabilities through commercially available digital records. It can also include simple technical methods, such as human intelligence gathering and postal interception.

Internet privacy involves the right or mandate of personal privacy concerning the storage, re-purposing, provision to third parties, and display of information pertaining to oneself via the Internet. Internet privacy is a subset of data privacy. Privacy concerns have been articulated from the beginnings of large-scale computer sharing and especially relate to mass surveillance.

Social computing is an area of computer science that is concerned with the intersection of social behavior and computational systems. It is based on creating or recreating social conventions and social contexts through the use of software and technology. Thus, blogs, email, instant messaging, social network services, wikis, social bookmarking and other instances of what is often called social software illustrate ideas from social computing.

Locative media or location-based media (LBM) is a virtual medium of communication functionally bound to a location. The physical implementation of locative media, however, is not bound to the same location to which the content refers.

<span class="mw-page-title-main">GPS for the visually impaired</span>

Since the Global Positioning System (GPS) was introduced in the late 1980s there have been many attempts to integrate it into a navigation-assistance system for blind and visually impaired people.

Mobile marketing is a multi-channel online marketing technique focused at reaching a specific audience on their smartphones, feature phones, tablets, or any other related devices through websites, e-mail, SMS and MMS, social media, or mobile applications. Mobile marketing can provide customers with time and location sensitive, personalized information that promotes goods, services, appointment reminders and ideas. In a more theoretical manner, academic Andreas Kaplan defines mobile marketing as "any marketing activity conducted through a ubiquitous network to which consumers are constantly connected using a personal mobile device".

Global Navigation Satellite System (GNSS) receivers, using the GPS, GLONASS, Galileo or BeiDou system, are used in many applications. The first systems were developed in the 20th century, mainly to help military personnel find their way, but location awareness soon found many civilian applications.

<span class="mw-page-title-main">Geosocial networking</span> Social network with geographic features

Geosocial networking is a type of social networking in which geographic services and capabilities such as geocoding and geotagging are used to enable additional social dynamics. User-submitted location data or geolocation techniques can allow social networks to connect and coordinate users with local people or events that match their interests. Geolocation on web-based social network services can be IP-based or use hotspot trilateration. For mobile social networks, texted location information or mobile phone tracking can enable location-based services to enrich social networking.

Cyril Lionel Houri is a New York-based inventor and entrepreneur who has founded two geolocation technology companies: InfoSplit, Inc. and Mexens Technology Inc.. Houri is recognized as one of the inventors of IP address geolocation, and has contributed in the advance of WiFi and cellular positioning technologies. For his expertise, he testified as an expert witness on location-based technology in LICRA vs. Yahoo!.

<span class="mw-page-title-main">Here Technologies</span> Netherlands-based mapping data company

Here Technologies is a Dutch multinational group specialized in mapping technologies, location data, and related automotive services to individuals and companies. It is majority-owned by a consortium of German automotive companies and American semiconductor company Intel whilst other companies also own minority stakes. Its roots date back to U.S.-based Navteq in 1985, which was acquired by Finland-based Nokia in 2007. Here is currently based in The Netherlands.

Urban computing is an interdisciplinary field which pertains to the study and application of computing technology in urban areas. This involves the application of wireless networks, sensors, computational power, and data to improve the quality of densely populated areas. Urban computing is the technological framework for smart cities.

<span class="mw-page-title-main">Mobile technology</span> Technology used for cellular communication

Mobile technology is the technology used for cellular communication. Mobile technology has evolved rapidly over the past few years. Since the start of this millennium, a standard mobile device has gone from being no more than a simple two-way pager to being a mobile phone, GPS navigation device, an embedded web browser and instant messaging client, and a handheld gaming console. Many experts believe that the future of computer technology rests in mobile computing with wireless networking. Mobile computing by way of tablet computers is becoming more popular. Tablets are available on the 3G and 4G networks.

The social data revolution is the shift in human communication patterns towards increased personal information sharing and its related implications, made possible by the rise of social networks in the early 2000s. This phenomenon has resulted in the accumulation of unprecedented amounts of public data.

Consumer adoption of technological innovations is the process consumers use to determine whether or not to adopt an innovation. This process is influenced by consumer characteristics, such as personality traits and demographic or socioeconomic factors, the characteristics of the new product, such as its relative advantage and complexity, and social influences, such as opinion leaders.

The use of electronic and communication technologies as a therapeutic aid to healthcare practices is commonly referred to as telemedicine or eHealth. The use of such technologies as a supplement to mainstream therapies for mental disorders is an emerging mental health treatment field which, it is argued, could improve the accessibility, effectiveness and affordability of mental health care. Mental health technologies used by professionals as an adjunct to mainstream clinical practices include email, SMS, virtual reality, computer programs, blogs, social networks, the telephone, video conferencing, computer games, instant messaging and podcasts.

Cross-device tracking is technology that enables the tracking of users across multiple devices such as smartphones, television sets, smart TVs, and personal computers.

ARCore, also known as Google Play Services for AR, is a software development kit developed by Google that allows for augmented reality (AR) applications to be built. ARCore has been integrated into a multitude of devices.

References

  1. "TR10: Reality Mining", Technology Review Magazine
  2. "There's Gold in 'Reality Mining'", BusinessWeek 2008
  3. BLUETOOTH TRAFFIC MONITORING TECHNOLOGY - UNIVERSITY OF MARYLAND – CENTER FOR ADVANCED TRANSPORTATION TECHNOLOGY
  4. Eagle, Nathan; Green, Kate (August 2014). Reality Mining : Using Big Data to Engineer a Better World. The MIT Press. p. 206.
  5. Eagle, Nathan; Green, Kate (August 2014). Reality Mining : Using Big Data to Engineer a Better World. The MIT Press. p. 111.

Further reading