Realized variance

Last updated

Realized variance or realised variance (RV, see spelling differences) is the sum of squared returns. For instance the RV can be the sum of squared daily returns for a particular month, which would yield a measure of price variation over this month. More commonly, the realized variance is computed as the sum of squared intraday returns for a particular day.

Contents

The realized variance is useful because it provides a relatively accurate measure of volatility [1] which is useful for many purposes, including volatility forecasting and forecast evaluation.

Unlike the variance the realized variance is a random quantity.

The realized volatility is the square root of the realized variance, or the square root of the RV multiplied by a suitable constant to bring the measure of volatility to an annualized scale. For instance, if the RV is computed as the sum of squared daily returns for some month, then an annualized realized volatility is given by .

Properties under ideal conditions

Under ideal circumstances the RV consistently estimates the quadratic variation of the price process that the returns are computed from. [2] Ole E. Barndorff-Nielsen and Neil Shephard (2002), Journal of the Royal Statistical Society, Series B, 63, 2002, 253–280.

For instance suppose that the price process is given by the stochastic integral

where is a standard Brownian motion, and is some (possibly random) process for which the integrated variance,

is well defined.

The realized variance based on intraday returns is given by where the intraday returns may be defined by

Then it has been shown that, as the realized variance converges to IV in probability. Moreover, the RV also converges in distribution in the sense that

is approximately distributed as a standard normal random variables when is large.

Properties when prices are measured with noise

When prices are measured with noise the RV may not estimate the desired quantity. [3] This problem motivated the development of a wide range of robust realized measures of volatility, such as the realized kernel estimator. [4]

See also

Notes

  1. Andersen, Torben G.; Bollerslev, Tim (1998). "Answering the sceptics: yes standard volatility models do provide accurate forecasts". International Economic Review. 39 (4): 885–905. CiteSeerX   10.1.1.28.454 . doi:10.2307/2527343. JSTOR   2527343.
  2. Barndorff-Nielsen, Ole E.; Shephard, Neil (May 2002). "Econometric analysis of realised volatility and its use in estimating stochastic volatility models". Journal of the Royal Statistical Society, Series B. 64 (2): 253–280. doi: 10.1111/1467-9868.00336 . S2CID   122716443.
  3. Hansen, Peter Reinhard; Lunde, Asger (April 2006). "Realized variance and market microstructure noise". Journal of Business and Economic Statistics. 24 (2): 127–218. doi:10.1198/073500106000000071.
  4. Barndorff-Nielsen, Ole E.; Hansen, Peter Reinhard; Lunde, Asger; Shephard, Neil (November 2008). "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise". Econometrica. 76 (6): 1481–1536. CiteSeerX   10.1.1.566.3764 . doi:10.3982/ECTA6495. Archived from the original on 2011-07-26.

Related Research Articles

<span class="mw-page-title-main">Normal distribution</span> Probability distribution

In statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is

<span class="mw-page-title-main">Standard deviation</span> In statistics, a measure of variation

In statistics, the standard deviation is a measure of the amount of variation or dispersion of a set of values. A low standard deviation indicates that the values tend to be close to the mean of the set, while a high standard deviation indicates that the values are spread out over a wider range.

<span class="mw-page-title-main">Variance</span> Statistical measure of how far values spread from their average

In probability theory and statistics, variance is the squared deviation from the mean of a random variable. The standard deviation is obtained as the square root of the variance. Variance is a measure of dispersion, meaning it is a measure of how far a set of numbers is spread out from their average value. It is the second central moment of a distribution, and the covariance of the random variable with itself, and it is often represented by , , , , or .

<span class="mw-page-title-main">Geometric Brownian motion</span> Continuous stochastic process

A geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. It is an important example of stochastic processes satisfying a stochastic differential equation (SDE); in particular, it is used in mathematical finance to model stock prices in the Black–Scholes model.

<span class="mw-page-title-main">Pearson correlation coefficient</span> Measure of linear correlation

In statistics, the Pearson correlation coefficient (PCC) is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviations; thus, it is essentially a normalized measurement of the covariance, such that the result always has a value between −1 and 1. As with covariance itself, the measure can only reflect a linear correlation of variables, and ignores many other types of relationships or correlations. As a simple example, one would expect the age and height of a sample of teenagers from a high school to have a Pearson correlation coefficient significantly greater than 0, but less than 1.

<span class="mw-page-title-main">Rayleigh distribution</span> Probability distribution

In probability theory and statistics, the Rayleigh distribution is a continuous probability distribution for nonnegative-valued random variables. Up to rescaling, it coincides with the chi distribution with two degrees of freedom. The distribution is named after Lord Rayleigh.

In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of a parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size value. Examples of effect sizes include the correlation between two variables, the regression coefficient in a regression, the mean difference, or the risk of a particular event happening. Effect sizes complement statistical hypothesis testing, and play an important role in power analyses, sample size planning, and in meta-analyses. The cluster of data-analysis methods concerning effect sizes is referred to as estimation statistics.

In statistics, propagation of uncertainty is the effect of variables' uncertainties on the uncertainty of a function based on them. When the variables are the values of experimental measurements they have uncertainties due to measurement limitations which propagate due to the combination of variables in the function.

Modern portfolio theory (MPT), or mean-variance analysis, is a mathematical framework for assembling a portfolio of assets such that the expected return is maximized for a given level of risk. It is a formalization and extension of diversification in investing, the idea that owning different kinds of financial assets is less risky than owning only one type. Its key insight is that an asset's risk and return should not be assessed by itself, but by how it contributes to a portfolio's overall risk and return. The variance of return is used as a measure of risk, because it is tractable when assets are combined into portfolios. Often, the past variance of returns is used as a proxy for the future variance, but other, more sophisticated methods are available.

A variance swap is an over-the-counter financial derivative that allows one to speculate on or hedge risks associated with the magnitude of movement, i.e. volatility, of some underlying product, like an exchange rate, interest rate, or stock index.

In finance, diversification is the process of allocating capital in a way that reduces the exposure to any one particular asset or risk. A common path towards diversification is to reduce risk or volatility by investing in a variety of assets. If asset prices do not change in perfect synchrony, a diversified portfolio will have less variance than the weighted average variance of its constituent assets, and often less volatility than the least volatile of its constituents.

In statistics, stochastic volatility models are those in which the variance of a stochastic process is itself randomly distributed. They are used in the field of mathematical finance to evaluate derivative securities, such as options. The name derives from the models' treatment of the underlying security's volatility as a random process, governed by state variables such as the price level of the underlying security, the tendency of volatility to revert to some long-run mean value, and the variance of the volatility process itself, among others.

In finance, a volatility swap is a forward contract on the future realised volatility of a given underlying asset. Volatility swaps allow investors to trade the volatility of an asset directly, much as they would trade a price index. Its payoff at expiration is equal to

In statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation of a population of values, in such a way that the expected value of the calculation equals the true value. Except in some important situations, outlined later, the task has little relevance to applications of statistics since its need is avoided by standard procedures, such as the use of significance tests and confidence intervals, or by using Bayesian analysis.

A local volatility model, in mathematical finance and financial engineering, is an option pricing model that treats volatility as a function of both the current asset level and of time . As such, it is a generalisation of the Black–Scholes model, where the volatility is a constant. Local volatility models are often compared with stochastic volatility models, where the instantaneous volatility is not just a function of the asset level but depends also on a new "global" randomness coming from an additional random component.

<span class="mw-page-title-main">Volatility (finance)</span> Degree of variation of a trading price series over time

In finance, volatility is the degree of variation of a trading price series over time, usually measured by the standard deviation of logarithmic returns.

Forward volatility is a measure of the implied volatility of a financial instrument over a period in the future, extracted from the term structure of volatility.

In statistics, inverse-variance weighting is a method of aggregating two or more random variables to minimize the variance of the weighted average. Each random variable is weighted in inverse proportion to its variance, i.e., proportional to its precision.

In finance, an option on realized variance is a type of variance derivatives which is the derivative securities on which the payoff depends on the annualized realized variance of the return of a specified underlying asset, such as stock index, bond, exchange rate, etc. Another liquidated security of the same type is variance swap, which is, in other words, the futures contract on realized variance.

In finance, option on realized volatility is a subclass of derivatives securities that the payoff function embedded with the notion of annualized realized volatility of a specified underlying asset, which could be stock index, bond, foreign exchange rate, etc. Another product of volatility derivative that is widely traded refers to the volatility swap, which is in another word the forward contract on future realized volatility.