In mathematics, a recurrent word or sequence is an infinite word over a finite alphabet in which every factor occurs infinitely many times. [1] [2] [3] An infinite word is recurrent if and only if it is a sesquipower. [4] [5]
A uniformly recurrent word is a recurrent word in which for any given factor X in the sequence, there is some length nX (often much longer than the length of X) such that X appears in every block of length nX. [1] [6] [7] The terms minimal sequence [8] and almost periodic sequence (Muchnik, Semenov, Ushakov 2003) are also used.
In mathematics, the Thue–Morse sequence, or Prouhet–Thue–Morse sequence, is the binary sequence obtained by starting with 0 and successively appending the Boolean complement of the sequence obtained thus far. The first few steps of this procedure yield the strings 0 then 01, 0110, 01101001, 0110100110010110, and so on, which are prefixes of the Thue–Morse sequence. The full sequence begins:
In abstract algebra, the free monoid on a set is the monoid whose elements are all the finite sequences of zero or more elements from that set, with string concatenation as the monoid operation and with the unique sequence of zero elements, often called the empty string and denoted by ε or λ, as the identity element. The free monoid on a set A is usually denoted A∗. The free semigroup on A is the subsemigroup of A∗ containing all elements except the empty string. It is usually denoted A+.
In mathematics, the Prouhet–Thue–Morse constant, named for Eugène Prouhet, Axel Thue, and Marston Morse, is the number—denoted by τ—whose binary expansion .01101001100101101001011001101001... is given by the Thue–Morse sequence. That is,
In mathematics, a Sturmian word, named after Jacques Charles François Sturm, is a certain kind of infinitely long sequence of characters. Such a sequence can be generated by considering a game of English billiards on a square table. The struck ball will successively hit the vertical and horizontal edges labelled 0 and 1 generating a sequence of letters. This sequence is a Sturmian word.
A Fibonacci word is a specific sequence of binary digits. The Fibonacci word is formed by repeated concatenation in the same way that the Fibonacci numbers are formed by repeated addition.
In combinatorics, a squarefree word is a word that does not contain any squares. A square is a word of the form XX, where X is not empty. Thus, a squarefree word can also be defined as a word that avoids the pattern XX.
In mathematics and theoretical computer science, an automatic sequence is an infinite sequence of terms characterized by a finite automaton. The n-th term of an automatic sequence a(n) is a mapping of the final state reached in a finite automaton accepting the digits of the number n in some fixed base k.
In mathematics, the Rudin–Shapiro sequence, also known as the Golay–Rudin–Shapiro sequence, is an infinite 2-automatic sequence named after Marcel Golay, Walter Rudin, and Harold S. Shapiro, who independently investigated its properties.
Combinatorics on words is a fairly new field of mathematics, branching from combinatorics, which focuses on the study of words and formal languages. The subject looks at letters or symbols, and the sequences they form. Combinatorics on words affects various areas of mathematical study, including algebra and computer science. There have been a wide range of contributions to the field. Some of the first work was on square-free words by Axel Thue in the early 1900s. He and colleagues observed patterns within words and tried to explain them. As time went on, combinatorics on words became useful in the study of algorithms and coding. It led to developments in abstract algebra and answering open questions.
In computer science, the complexity function of a string, a finite or infinite sequence of letters from some alphabet, is the function that counts the number of distinct factors from that string. More generally, the complexity function of a language, a set of finite words over an alphabet, counts the number of distinct words of given length.
In mathematics, the Rauzy fractal is a fractal set associated with the Tribonacci substitution
M. Lothaire is the pseudonym of a group of mathematicians, many of whom were students of Marcel-Paul Schützenberger. The name is used as the author of several of their joint books about combinatorics on words. The group is named for Lothair I.
In digital geometry, a cutting sequence is a sequence of symbols whose elements correspond to the individual grid lines crossed ("cut") as a curve crosses a square grid.
In mathematics and computer science, a morphic word or substitutive word is an infinite sequence of symbols which is constructed from a particular class of endomorphism of a free monoid.
In mathematics, a sesquipower or Zimin word is a string over an alphabet with identical prefix and suffix. Sesquipowers are unavoidable patterns, in the sense that all sufficiently long strings contain one.
In mathematics and theoretical computer science, a pattern is an unavoidable pattern if it is unavoidable on any finite alphabet.
In mathematics and computer science, the critical exponent of a finite or infinite sequence of symbols over a finite alphabet describes the largest number of times a contiguous subsequence can be repeated. For example, the critical exponent of "Mississippi" is 7/3, as it contains the string "ississi", which is of length 7 and period 3.
In mathematics, Ostrowski numeration, named after Alexander Ostrowski, is either of two related numeration systems based on continued fractions: a non-standard positional numeral system for integers and a non-integer representation of real numbers.
Gesine Reinert is a University Professor in Statistics at the University of Oxford. She is a Fellow of Keble College, Oxford, a Fellow of the Alan Turing Institute, and a Fellow of the Institute of Mathematical Statistics. Her research concerns the probability theory and statistics of biological sequences and biological networks.
Valérie Berthé is a French mathematician who works as a director of research for the Centre national de la recherche scientifique (CNRS) at the Institut de Recherche en Informatique Fondamentale (IRIF), a joint project between CNRS and Paris Diderot University. Her research involves symbolic dynamics, combinatorics on words, discrete geometry, numeral systems, tessellations, and fractals.