In mathematics, in semigroup theory, a Rees factor semigroup (also called Rees quotient semigroup or just Rees factor), named after David Rees, is a certain semigroup constructed using a semigroup and an ideal of the semigroup.
Let S be a semigroup and I be an ideal of S. Using S and I one can construct a new semigroup by collapsing I into a single element while the elements of S outside of I retain their identity. The new semigroup obtained in this way is called the Rees factor semigroup of S modulo I and is denoted by S/I.
The concept of Rees factor semigroup was introduced by David Rees in 1940. [1] [2]
A subset of a semigroup is called an ideal of if both and are subsets of (where , and similarly for ). Let be an ideal of a semigroup . The relation in defined by
is an equivalence relation in . The equivalence classes under are the singleton sets with not in and the set . Since is an ideal of , the relation is a congruence on . [3] The quotient semigroup is, by definition, the Rees factor semigroup of modulo . For notational convenience the semigroup is also denoted as . The Rees factor semigroup [4] has underlying set , where is a new element and the product (here denoted by ) is defined by
The congruence on as defined above is called the Rees congruence on modulo .
Consider the semigroup S = { a, b, c, d, e } with the binary operation defined by the following Cayley table:
· | a | b | c | d | e |
---|---|---|---|---|---|
a | a | a | a | d | d |
b | a | b | c | d | d |
c | a | c | b | d | d |
d | d | d | d | a | a |
e | d | e | e | a | a |
Let I = { a, d } which is a subset of S. Since
the set I is an ideal of S. The Rees factor semigroup of S modulo I is the set S/I = { b, c, e, I } with the binary operation defined by the following Cayley table:
· | b | c | e | I |
---|---|---|---|---|
b | b | c | I | I |
c | c | b | I | I |
e | e | e | I | I |
I | I | I | I | I |
A semigroup S is called an ideal extension of a semigroup A by a semigroup B if A is an ideal of S and the Rees factor semigroup S/A is isomorphic to B. [5]
Some of the cases that have been studied extensively include: ideal extensions of completely simple semigroups, of a group by a completely 0-simple semigroup, of a commutative semigroup with cancellation by a group with added zero. In general, the problem of describing all ideal extensions of a semigroup is still open. [6]
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equality. Any number is equal to itself (reflexive). If , then (symmetric). If and , then (transitive).
In mathematics, when the elements of some set have a notion of equivalence, then one may naturally split the set into equivalence classes. These equivalence classes are constructed so that elements and belong to the same equivalence class if, and only if, they are equivalent.
In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0.
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it.
In mathematics, specifically abstract algebra, the isomorphism theorems are theorems that describe the relationship among quotients, homomorphisms, and subobjects. Versions of the theorems exist for groups, rings, vector spaces, modules, Lie algebras, and other algebraic structures. In universal algebra, the isomorphism theorems can be generalized to the context of algebras and congruences.
In abstract algebra, a congruence relation is an equivalence relation on an algebraic structure that is compatible with the structure in the sense that algebraic operations done with equivalent elements will yield equivalent elements. Every congruence relation has a corresponding quotient structure, whose elements are the equivalence classes for the relation.
In mathematics, the symmetric difference of two sets, also known as the disjunctive union and set sum, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets and is .
In mathematics, a partition of a set is a grouping of its elements into non-empty subsets, in such a way that every element is included in exactly one subset.
In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group, is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem, and uses a specified set of generators for the group. It is a central tool in combinatorial and geometric group theory. The structure and symmetry of Cayley graphs makes them particularly good candidates for constructing expander graphs.
Chebotarev's density theorem in algebraic number theory describes statistically the splitting of primes in a given Galois extension K of the field of rational numbers. Generally speaking, a prime integer will factor into several ideal primes in the ring of algebraic integers of K. There are only finitely many patterns of splitting that may occur. Although the full description of the splitting of every prime p in a general Galois extension is a major unsolved problem, the Chebotarev density theorem says that the frequency of the occurrence of a given pattern, for all primes p less than a large integer N, tends to a certain limit as N goes to infinity. It was proved by Nikolai Chebotaryov in his thesis in 1922, published in.
In mathematics and computer science, the syntactic monoid of a formal language is the smallest monoid that recognizes the language .
In mathematics, a join-semilattice is a partially ordered set that has a join for any nonempty finite subset. Dually, a meet-semilattice is a partially ordered set which has a meet for any nonempty finite subset. Every join-semilattice is a meet-semilattice in the inverse order and vice versa.
In mathematics, Green's relations are five equivalence relations that characterise the elements of a semigroup in terms of the principal ideals they generate. The relations are named for James Alexander Green, who introduced them in a paper of 1951. John Mackintosh Howie, a prominent semigroup theorist, described this work as "so all-pervading that, on encountering a new semigroup, almost the first question one asks is 'What are the Green relations like?'". The relations are useful for understanding the nature of divisibility in a semigroup; they are also valid for groups, but in this case tell us nothing useful, because groups always have divisibility.
In group theory, an inverse semigroupS is a semigroup in which every element x in S has a unique inversey in S in the sense that x = xyx and y = yxy, i.e. a regular semigroup in which every element has a unique inverse. Inverse semigroups appear in a range of contexts; for example, they can be employed in the study of partial symmetries.
Abstract analytic number theory is a branch of mathematics which takes the ideas and techniques of classical analytic number theory and applies them to a variety of different mathematical fields. The classical prime number theorem serves as a prototypical example, and the emphasis is on abstract asymptotic distribution results. The theory was invented and developed by mathematicians such as John Knopfmacher and Arne Beurling in the twentieth century.
In abstract algebra, a semiheap is an algebraic structure consisting of a non-empty set H with a ternary operation denoted that satisfies a modified associativity property:
In algebra, a presentation of a monoid is a description of a monoid in terms of a set Σ of generators and a set of relations on the free monoid Σ∗ generated by Σ. The monoid is then presented as the quotient of the free monoid by these relations. This is an analogue of a group presentation in group theory.
In the mathematical field of set theory, an ideal is a partially ordered collection of sets that are considered to be "small" or "negligible". Every subset of an element of the ideal must also be in the ideal, and the union of any two elements of the ideal must also be in the ideal.
In mathematics, an approximately finite-dimensional (AF) C*-algebra is a C*-algebra that is the inductive limit of a sequence of finite-dimensional C*-algebras. Approximate finite-dimensionality was first defined and described combinatorially by Ola Bratteli. Later, George A. Elliott gave a complete classification of AF algebras using the K0 functor whose range consists of ordered abelian groups with sufficiently nice order structure.
In mathematics, near sets are either spatially close or descriptively close. Spatially close sets have nonempty intersection. In other words, spatially close sets are not disjoint sets, since they always have at least one element in common. Descriptively close sets contain elements that have matching descriptions. Such sets can be either disjoint or non-disjoint sets. Spatially near sets are also descriptively near sets.
This article incorporates material from Rees factor on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.