Region Based Convolutional Neural Networks

Last updated

Region-based Convolutional Neural Networks (R-CNN) are a family of machine learning models for computer vision and specifically object detection.

Contents

History

The original goal of R-CNN was to take an input image and produce a set of bounding boxes as output, where each bounding box contains an object and also the category (e.g. car or pedestrian) of the object. More recently, R-CNN has been extended to perform other computer vision tasks. The following covers some of the versions of R-CNN that have been developed.

Applications

Region-based convolutional neural networks have been used for tracking objects from a drone-mounted camera, [6] locating text in an image, [7] and enabling object detection in Google Lens. [8] Mask R-CNN serves as one of seven tasks in the MLPerf Training Benchmark, which is a competition to speed up the training of neural networks. [9]

Related Research Articles

Computer vision tasks include methods for acquiring, processing, analyzing and understanding digital images, and extraction of high-dimensional data from the real world in order to produce numerical or symbolic information, e.g. in the forms of decisions. Understanding in this context means the transformation of visual images into descriptions of the world that make sense to thought processes and can elicit appropriate action. This image understanding can be seen as the disentangling of symbolic information from image data using models constructed with the aid of geometry, physics, statistics, and learning theory.

<span class="mw-page-title-main">Artificial neural network</span> Computational model used in machine learning, based on connected, hierarchical functions

Artificial neural networks are a branch of machine learning models that are built using principles of neuronal organization discovered by connectionism in the biological neural networks constituting animal brains.

<span class="mw-page-title-main">Image segmentation</span> Partitioning a digital image into segments

In digital image processing and computer vision, image segmentation is the process of partitioning a digital image into multiple image segments, also known as image regions or image objects. The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to analyze. Image segmentation is typically used to locate objects and boundaries in images. More precisely, image segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label share certain characteristics.

<span class="mw-page-title-main">Anomaly detection</span> Approach in data analysis

In data analysis, anomaly detection is generally understood to be the identification of rare items, events or observations which deviate significantly from the majority of the data and do not conform to a well defined notion of normal behaviour. Such examples may arouse suspicions of being generated by a different mechanism, or appear inconsistent with the remainder of that set of data.

Object recognition – technology in the field of computer vision for finding and identifying objects in an image or video sequence. Humans recognize a multitude of objects in images with little effort, despite the fact that the image of the objects may vary somewhat in different view points, in many different sizes and scales or even when they are translated or rotated. Objects can even be recognized when they are partially obstructed from view. This task is still a challenge for computer vision systems. Many approaches to the task have been implemented over multiple decades.

Automatic target recognition (ATR) is the ability for an algorithm or device to recognize targets or other objects based on data obtained from sensors.

<span class="mw-page-title-main">Object detection</span> Computer technology related to computer vision and image processing

Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class in digital images and videos. Well-researched domains of object detection include face detection and pedestrian detection. Object detection has applications in many areas of computer vision, including image retrieval and video surveillance.

<span class="mw-page-title-main">Deep learning</span> Branch of machine learning

Deep learning is the subset of machine learning methods based on artificial neural networks with representation learning. The adjective "deep" refers to the use of multiple layers in the network. Methods used can be either supervised, semi-supervised or unsupervised.

<span class="mw-page-title-main">Feature learning</span> Set of learning techniques in machine learning

In machine learning, feature learning or representation learning is a set of techniques that allows a system to automatically discover the representations needed for feature detection or classification from raw data. This replaces manual feature engineering and allows a machine to both learn the features and use them to perform a specific task.

Convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns feature engineering by itself via filters optimization. Vanishing gradients and exploding gradients, seen during backpropagation in earlier neural networks, are prevented by using regularized weights over fewer connections. For example, for each neuron in the fully-connected layer 10,000 weights would be required for processing an image sized 100 × 100 pixels. However, applying cascaded convolution kernels, only 25 neurons are required to process 5x5-sized tiles. Higher-layer features are extracted from wider context windows, compared to lower-layer features.

<span class="mw-page-title-main">Adversarial machine learning</span> Research field that lies at the intersection of machine learning and computer security

Adversarial machine learning is the study of the attacks on machine learning algorithms, and of the defenses against such attacks. A survey from May 2020 exposes the fact that practitioners report a dire need for better protecting machine learning systems in industrial applications.

<span class="mw-page-title-main">AlexNet</span> Convolutional neural network

AlexNet is the name of a convolutional neural network (CNN) architecture, designed by Alex Krizhevsky in collaboration with Ilya Sutskever and Geoffrey Hinton, who was Krizhevsky's Ph.D. advisor at the University of Toronto.

A capsule neural network (CapsNet) is a machine learning system that is a type of artificial neural network (ANN) that can be used to better model hierarchical relationships. The approach is an attempt to more closely mimic biological neural organization.

<span class="mw-page-title-main">Neural architecture search</span> Machine learning-powered structure design

Neural architecture search (NAS) is a technique for automating the design of artificial neural networks (ANN), a widely used model in the field of machine learning. NAS has been used to design networks that are on par or outperform hand-designed architectures. Methods for NAS can be categorized according to the search space, search strategy and performance estimation strategy used:

U-Net is a convolutional neural network that was developed for biomedical image segmentation at the Computer Science Department of the University of Freiburg. The network is based on a fully convolutional neural network whose architecture was modified and extended to work with fewer training images and to yield more precise segmentation. Segmentation of a 512 × 512 image takes less than a second on a modern GPU.

A Siamese neural network is an artificial neural network that uses the same weights while working in tandem on two different input vectors to compute comparable output vectors. Often one of the output vectors is precomputed, thus forming a baseline against which the other output vector is compared. This is similar to comparing fingerprints but can be described more technically as a distance function for locality-sensitive hashing.

LeNet is a convolutional neural network structure proposed by LeCun et al. in 1998. In general, LeNet refers to LeNet-5 and is a simple convolutional neural network. Convolutional neural networks are a kind of feed-forward neural network whose artificial neurons can respond to a part of the surrounding cells in the coverage range and perform well in large-scale image processing.

A vision transformer (ViT) is a transformer designed for computer vision. A ViT breaks down an input image into a series of patches, serialises each patch into a vector, and maps it to a smaller dimension with a single matrix multiplication. These vector embeddings are then processed by a transformer encoder as if they were token embeddings.

Small object detection is a particular case of object detection where various techniques are employed to detect small objects in digital images and videos. "Small objects" are objects having a small pixel footprint in the input image. In areas such as aerial imagery, state-of-the-art object detection techniques under performed because of small objects.

References

  1. Gandhi, Rohith (July 9, 2018). "R-CNN, Fast R-CNN, Faster R-CNN, YOLO — Object Detection Algorithms". Towards Data Science. Retrieved March 12, 2020.
  2. 1 2 Bhatia, Richa (September 10, 2018). "What is region of interest pooling?". Analytics India. Retrieved March 12, 2020.
  3. Farooq, Umer (February 15, 2018). "From R-CNN to Mask R-CNN". Medium. Retrieved March 12, 2020.
  4. Weng, Lilian (December 31, 2017). "Object Detection for Dummies Part 3: R-CNN Family". Lil'Log. Retrieved March 12, 2020.
  5. Wiggers, Kyle (October 29, 2019). "Facebook highlights AI that converts 2D objects into 3D shapes". VentureBeat. Retrieved March 12, 2020.
  6. Nene, Vidi (Aug 2, 2019). "Deep Learning-Based Real-Time Multiple-Object Detection and Tracking via Drone". Drone Below. Retrieved Mar 28, 2020.
  7. Ray, Tiernan (Sep 11, 2018). "Facebook pumps up character recognition to mine memes". ZDnet. Retrieved Mar 28, 2020.
  8. Sagar, Ram (Sep 9, 2019). "These machine learning methods make google lens a success". Analytics India. Retrieved Mar 28, 2020.
  9. Mattson, Peter; et al. (2019). "MLPerf Training Benchmark". arXiv: 1910.01500v3 [math.LG].