Relaxation (iterative method)

Last updated

In numerical mathematics, relaxation methods are iterative methods for solving systems of equations, including nonlinear systems. [1]

Contents

Relaxation methods were developed for solving large sparse linear systems, which arose as finite-difference discretizations of differential equations. [2] [3] They are also used for the solution of linear equations for linear least-squares problems [4] and also for systems of linear inequalities, such as those arising in linear programming. [5] [6] [7] They have also been developed for solving nonlinear systems of equations. [1]

Relaxation methods are important especially in the solution of linear systems used to model elliptic partial differential equations, such as Laplace's equation and its generalization, Poisson's equation. These equations describe boundary-value problems, in which the solution-function's values are specified on boundary of a domain; the problem is to compute a solution also on its interior. Relaxation methods are used to solve the linear equations resulting from a discretization of the differential equation, for example by finite differences. [2] [3] [4]

Iterative relaxation of solutions is commonly dubbed smoothing because with certain equations, such as Laplace's equation, it resembles repeated application of a local smoothing filter to the solution vector. These are not to be confused with relaxation methods in mathematical optimization, which approximate a difficult problem by a simpler problem whose "relaxed" solution provides information about the solution of the original problem. [7]

Model problem of potential theory

When φ is a smooth real-valued function on the real numbers, its second derivative can be approximated by:

Using this in both dimensions for a function φ of two arguments at the point (x, y), and solving for φ(x, y), results in:

To approximate the solution of the Poisson equation:

numerically on a two-dimensional grid with grid spacing h, the relaxation method assigns the given values of function φ to the grid points near the boundary and arbitrary values to the interior grid points, and then repeatedly performs the assignment φ := φ* on the interior points, where φ* is defined by:

until convergence. [2] [3]

The method [2] [3] is easily generalized to other numbers of dimensions.

Convergence and acceleration

While the method converges under general conditions, it typically makes slower progress than competing methods. Nonetheless, the study of relaxation methods remains a core part of linear algebra, because the transformations of relaxation theory provide excellent preconditioners for new methods. Indeed, the choice of preconditioner is often more important than the choice of iterative method. [8]

Multigrid methods may be used to accelerate the methods. One can first compute an approximation on a coarser grid – usually the double spacing 2h – and use that solution with interpolated values for the other grid points as the initial assignment. This can then also be done recursively for the coarser computation. [8] [9]

See also

Notes

  1. 1 2 Ortega, J. M.; Rheinboldt, W. C. (2000). Iterative solution of nonlinear equations in several variables. Classics in Applied Mathematics. Vol. 30 (Reprint of the 1970 Academic Press ed.). Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM). pp. xxvi+572. ISBN   0-89871-461-3. MR   1744713.
  2. 1 2 3 4 Richard S. Varga 2002 Matrix Iterative Analysis, Second ed. (of 1962 Prentice Hall edition), Springer-Verlag.
  3. 1 2 3 4 David M. Young, Jr. Iterative Solution of Large Linear Systems, Academic Press, 1971. (reprinted by Dover, 2003)
  4. 1 2 Abraham Berman, Robert J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, 1994, SIAM. ISBN   0-89871-321-8.
  5. Murty, Katta G. (1983). "16 Iterative methods for linear inequalities and linear programs (especially 16.2 Relaxation methods, and 16.4 Sparsity-preserving iterative SOR algorithms for linear programming)". Linear programming. New York: John Wiley & Sons Inc. pp. 453–464. ISBN   0-471-09725-X. MR   0720547.
  6. Goffin, J.-L. (1980). "The relaxation method for solving systems of linear inequalities". Mathematics of Operations Research . 5 (3): 388–414. doi:10.1287/moor.5.3.388. JSTOR   3689446. MR   0594854.
  7. 1 2 Minoux, M. (1986). Mathematical programming: Theory and algorithms. Egon Balas (foreword) (Translated by Steven Vajda from the (1983 Paris: Dunod) French ed.). Chichester: A Wiley-Interscience Publication. John Wiley & Sons, Ltd. pp. xxviii+489. ISBN   0-471-90170-9. MR   0868279. (2008 Second ed., in French: Programmation mathématique: Théorie et algorithmes. Editions Tec & Doc, Paris, 2008. xxx+711 pp. . ).
  8. 1 2 Yousef Saad, Iterative Methods for Sparse Linear Systems , 1st edition, PWS, 1996.
  9. William L. Briggs, Van Emden Henson, and Steve F. McCormick (2000), A Multigrid Tutorial Archived 2006-10-06 at the Wayback Machine (2nd ed.), Philadelphia: Society for Industrial and Applied Mathematics, ISBN   0-89871-462-1.

Related Research Articles

In computational mathematics, an iterative method is a mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the n-th approximation is derived from the previous ones.

<span class="mw-page-title-main">Numerical analysis</span> Study of algorithms using numerical approximation

Numerical analysis is the study of algorithms that use numerical approximation for the problems of mathematical analysis. It is the study of numerical methods that attempt to find approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts. Current growth in computing power has enabled the use of more complex numerical analysis, providing detailed and realistic mathematical models in science and engineering. Examples of numerical analysis include: ordinary differential equations as found in celestial mechanics, numerical linear algebra in data analysis, and stochastic differential equations and Markov chains for simulating living cells in medicine and biology.

<span class="mw-page-title-main">Partial differential equation</span> Type of differential equation

In mathematics, a partial differential equation (PDE) is an equation which computes a function between various partial derivatives of a multivariable function.

In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation. If the values of the first numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation.

<span class="mw-page-title-main">Poisson's equation</span> Expression frequently encountered in mathematical physics, generalization of Laplaces equation.

Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with the potential field known, one can then calculate electrostatic or gravitational (force) field. It is a generalization of Laplace's equation, which is also frequently seen in physics. The equation is named after French mathematician and physicist Siméon Denis Poisson.

<span class="mw-page-title-main">Nonlinear Schrödinger equation</span> Nonlinear form of the Schrödinger equation

In theoretical physics, the (one-dimensional) nonlinear Schrödinger equation (NLSE) is a nonlinear variation of the Schrödinger equation. It is a classical field equation whose principal applications are to the propagation of light in nonlinear optical fibers and planar waveguides and to Bose–Einstein condensates confined to highly anisotropic, cigar-shaped traps, in the mean-field regime. Additionally, the equation appears in the studies of small-amplitude gravity waves on the surface of deep inviscid (zero-viscosity) water; the Langmuir waves in hot plasmas; the propagation of plane-diffracted wave beams in the focusing regions of the ionosphere; the propagation of Davydov's alpha-helix solitons, which are responsible for energy transport along molecular chains; and many others. More generally, the NLSE appears as one of universal equations that describe the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Unlike the linear Schrödinger equation, the NLSE never describes the time evolution of a quantum state. The 1D NLSE is an example of an integrable model.

Numerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs).

In numerical analysis, a multigrid method is an algorithm for solving differential equations using a hierarchy of discretizations. They are an example of a class of techniques called multiresolution methods, very useful in problems exhibiting multiple scales of behavior. For example, many basic relaxation methods exhibit different rates of convergence for short- and long-wavelength components, suggesting these different scales be treated differently, as in a Fourier analysis approach to multigrid. MG methods can be used as solvers as well as preconditioners.

In mathematics a radial basis function (RBF) is a real-valued function whose value depends only on the distance between the input and some fixed point, either the origin, so that , or some other fixed point , called a center, so that . Any function that satisfies the property is a radial function. The distance is usually Euclidean distance, although other metrics are sometimes used. They are often used as a collection which forms a basis for some function space of interest, hence the name.

In mathematics, delay differential equations (DDEs) are a type of differential equation in which the derivative of the unknown function at a certain time is given in terms of the values of the function at previous times. DDEs are also called time-delay systems, systems with aftereffect or dead-time, hereditary systems, equations with deviating argument, or differential-difference equations. They belong to the class of systems with the functional state, i.e. partial differential equations (PDEs) which are infinite dimensional, as opposed to ordinary differential equations (ODEs) having a finite dimensional state vector. Four points may give a possible explanation of the popularity of DDEs:

  1. Aftereffect is an applied problem: it is well known that, together with the increasing expectations of dynamic performances, engineers need their models to behave more like the real process. Many processes include aftereffect phenomena in their inner dynamics. In addition, actuators, sensors, and communication networks that are now involved in feedback control loops introduce such delays. Finally, besides actual delays, time lags are frequently used to simplify very high order models. Then, the interest for DDEs keeps on growing in all scientific areas and, especially, in control engineering.
  2. Delay systems are still resistant to many classical controllers: one could think that the simplest approach would consist in replacing them by some finite-dimensional approximations. Unfortunately, ignoring effects which are adequately represented by DDEs is not a general alternative: in the best situation, it leads to the same degree of complexity in the control design. In worst cases, it is potentially disastrous in terms of stability and oscillations.
  3. Voluntary introduction of delays can benefit the control system.
  4. In spite of their complexity, DDEs often appear as simple infinite-dimensional models in the very complex area of partial differential equations (PDEs).

In numerical linear algebra, the method of successive over-relaxation (SOR) is a variant of the Gauss–Seidel method for solving a linear system of equations, resulting in faster convergence. A similar method can be used for any slowly converging iterative process.

In mathematics, preconditioning is the application of a transformation, called the preconditioner, that conditions a given problem into a form that is more suitable for numerical solving methods. Preconditioning is typically related to reducing a condition number of the problem. The preconditioned problem is then usually solved by an iterative method.

In numerical analysis and computational fluid dynamics, Godunov's theorem — also known as Godunov's order barrier theorem — is a mathematical theorem important in the development of the theory of high-resolution schemes for the numerical solution of partial differential equations.

Numerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of. Numerical linear algebra uses properties of vectors and matrices to develop computer algorithms that minimize the error introduced by the computer, and is also concerned with ensuring that the algorithm is as efficient as possible.

Numerical continuation is a method of computing approximate solutions of a system of parameterized nonlinear equations,

<span class="mw-page-title-main">Finite element method</span> Numerical method for solving physical or engineering problems

The finite element method (FEM) is an extremely popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential.

In the finite element method for the numerical solution of elliptic partial differential equations, the stiffness matrix is a matrix that represents the system of linear equations that must be solved in order to ascertain an approximate solution to the differential equation.

The Kansa method is a computer method used to solve partial differential equations. Its main advantage is it is very easy to understand and program on a computer. It is much less complicated than the finite element method. Another advantage is it works well on multi variable problems. The finite element method is complicated when working with more than 3 space variables and time.

Cyclic reduction is a numerical method for solving large linear systems by repeatedly splitting the problem. Each step eliminates even or odd rows and columns of a matrix and remains in a similar form. The elimination step is relatively expensive but splitting the problem allows parallel computation.

References

Further reading