Renaissance Wax

Last updated
Renaissance Wax 200ml Can Renaissance Wax .jpg
Renaissance Wax 200ml Can
Lid of Renaissance Wax can, embossed with a royal warrant from Queen Elizabeth. Renaissance Wax lid.jpg
Lid of Renaissance Wax can, embossed with a royal warrant from Queen Elizabeth.

Renaissance Wax is a brand of microcrystalline wax polish used in antique restoration and museum conservation around the world. Commonly used to polish and conserve metal objects, it is also used on gemstones and such organic materials as wood, ivory, and tortoiseshell. The product is sometimes used by reenactors to protect armor and weapons. Waxes are more protective and longer-lasting than oil, especially for swords and helmets that are frequently touched by human hands. [1] It has recently been introduced in the world of guitar building, as a finish that protects and gives colour to the wood. [ citation needed ]

Contents

Wax coatings for conservation are most widely, and least controversially, applied to metals. This has several objectives: to produce a barrier that excludes moisture and oxygen from the metal surface, to preclude the introduction of contaminating elements by handling, and to provide a protective layer over anti-corrosion undercoatings.

Microcrystalline waxes used on ethnographic[ clarification needed ] metal objects are discouraged, as they may require extensive treatment for removal. [2]

Renaissance wax is used to protect metals such as silver, brass and copper from tarnishing, on collections of all types of metals (old coins, locks and keys, arms and armour both original and replica), on both the wood and metal surfaces of vintage cars and musical instruments, on bronze sculptures inside the home and outside exposed to the elements, on marble and granite worktops to prevent staining and on smooth leather items. [3]

Formulation

Renaissance Wax was developed in the British Museum Research Laboratory by Dr A E A Werner [4] in the late 1950s. It is manufactured by Picreator Enterprises Ltd. [5]

Earlier wax polishes based on beeswax and carnauba wax either contained acids or became acidic over time. Renaissance Wax is based on more stable microcrystalline waxes refined from crude oil. [6]

Renaissance Wax contains polyethylene waxes. Some other microcrystalline waxes intended for conservation use do not contain these.[ citation needed ]

Use

The wax is evenly and lightly applied over the surface, then lightly buffed with a smooth lint-free cloth or brush.

Application over other coatings

Renaissance Wax applied over Klucel G or a similar material used in retarding red rot in leather bookbindings can create an irremovable white residue if applied too heavily. Use of a different wax, such as SC6000, is recommended for leather.

Renaissance Wax is also commonly used in the preservation of bronze and copper coins. The wax seals the coins and helps prevent deterioration from moisture and air exposure. It may[ citation needed ] also help prevent the onset of the chloride-related corrosion commonly called bronze disease, although it won't arrest this once started.

Conservation of metals may also involve the application of an undercoat such as Incralac followed by the application of Renaissance Wax.

Accumulation of dust and lint

Wax coatings, in general, may accumulate dust and lint.

In one example where a Benin bust made from a copper-iron alloy had been coated with multiple materials including this wax, the polyethylene component required a higher-temperature solvent for removal than the rest of the wax. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Rust</span> Type of iron oxide

Rust is an iron oxide, a usually reddish-brown oxide formed by the reaction of iron and oxygen in the catalytic presence of water or air moisture. Rust consists of hydrous iron(III) oxides (Fe2O3·nH2O) and iron(III) oxide-hydroxide (FeO(OH), Fe(OH)3), and is typically associated with the corrosion of refined iron.

<span class="mw-page-title-main">Wax</span> Class of organic compounds which are malleable at room temperature

Waxes are a diverse class of organic compounds that are lipophilic, malleable solids near ambient temperatures. They include higher alkanes and lipids, typically with melting points above about 40 °C (104 °F), melting to give low viscosity liquids. Waxes are insoluble in water but soluble in nonpolar organic solvents such as hexane, benzene and chloroform. Natural waxes of different types are produced by plants and animals and occur in petroleum.

<span class="mw-page-title-main">Bronze sculpture</span> Sculpture cast in bronze

Bronze is the most popular metal for cast metal sculptures; a cast bronze sculpture is often called simply "a bronze". It can be used for statues, singly or in groups, reliefs, and small statuettes and figurines, as well as bronze elements to be fitted to other objects such as furniture. It is often gilded to give gilt-bronze or ormolu.

<span class="mw-page-title-main">Patina</span> Change of objects surface through age and exposure

Patina is a thin layer that variously forms on the surface of copper, brass, bronze, and similar metals and metal alloys, or certain stones and wooden furniture, or any similar acquired change of a surface through age and exposure.

<span class="mw-page-title-main">Tarnish</span> Corrosion on outer layer of some metals

Tarnish is a thin layer of corrosion that forms over copper, brass, aluminum, magnesium, neodymium and other similar metals as their outermost layer undergoes a chemical reaction. Tarnish does not always result from the sole effects of oxygen in the air. For example, silver needs hydrogen sulfide to tarnish, although it may tarnish with oxygen over time. It often appears as a dull, gray or black film or coating over metal. Tarnish is a surface phenomenon that is self-limiting, unlike rust. Only the top few layers of the metal react. The layer of tarnish seals and protects the underlying layers from reacting.

<span class="mw-page-title-main">Washer (hardware)</span> Thin plate with a hole, normally used to distribute the load of a threaded fastener

A washer is a thin plate with a hole that is normally used to distribute the load of a threaded fastener, such as a bolt or nut. Other uses are as a spacer, spring, wear pad, preload indicating device, locking device, and to reduce vibration.

Microcrystalline waxes are a type of wax produced by de-oiling petrolatum, as part of the petroleum refining process. In contrast to the more familiar paraffin wax which contains mostly unbranched alkanes, microcrystalline wax contains a higher percentage of isoparaffinic (branched) hydrocarbons and naphthenic hydrocarbons. It is characterized by the fineness of its crystals in contrast to the larger crystal of paraffin wax. It consists of high molecular weight saturated aliphatic hydrocarbons. It is generally darker, more viscous, denser, tackier and more elastic than paraffin waxes, and has a higher molecular weight and melting point. The elastic and adhesive characteristics of microcrystalline waxes are related to the non-straight chain components which they contain. Typical microcrystalline wax crystal structure is small and thin, making them more flexible than paraffin wax. It is commonly used in cosmetic formulations.

<span class="mw-page-title-main">Polishing (metalworking)</span> Abrasive process for creating smooth finished surfaces

Polishing and buffing are finishing processes for smoothing a workpiece's surface using an abrasive and a work wheel or a leather strop. Technically, polishing refers to processes that uses an abrasive that is glued to the work wheel, while buffing uses a loose abrasive applied to the work wheel. Polishing is a more aggressive process, while buffing is less harsh, which leads to a smoother, brighter finish. A common misconception is that a polished surface has a mirror-bright finish, however, most mirror-bright finishes are actually buffed.

Bronze disease is an irreversible and nearly inexorable corrosion process that occurs when chlorides come into contact with bronze or other copper-bearing alloys. It can occur as both a dark green coating, or as a much lighter whitish fuzzy or furry green coating. It is not a bacterial infection, but the result of a chemical reaction with the chlorides that usually occurs due to contamination of the bronze object by saltwater or from burial in specific types of soil where chloride salts are present. If not treated, complete destruction of the affected artifact is possible. Treatment is very difficult, costly and not always effective. Transfer of chlorides from the contaminated artefact to other artefacts can spread the condition.

<span class="mw-page-title-main">Conservation and restoration of metals</span> Material preservation activity

Conservation and restoration of metals is the activity devoted to the protection and preservation of historical and archaeological objects made partly or entirely of metal. In it are included all activities aimed at preventing or slowing deterioration of items, as well as improving accessibility and readability of the objects of cultural heritage. Despite the fact that metals are generally considered as relatively permanent and stable materials, in contact with the environment they deteriorate gradually, some faster and some much slower. This applies especially to archaeological finds.

Conservation and restoration of movable cultural property is a term used to denote the conservation of movable cultural property items in libraries, archives, museums and private collections. Conservation encompasses all the actions taken toward the long-term preservation of cultural heritage. Activities include examination, documentation, treatment, and preventive care, which is supported by research and education. Object conservation is specifically the actions taken to preserve and restore cultural objects. The objects span a wide range of materials from a variety of cultures, time periods, and functions. Object conservation can be applied to both art objects and artifacts. Conservation practice aims to prevent damage from occurring, a process known as 'preventive conservation'. The purpose of preventive conservation is to maintain, and where possible enhance, the condition of an object, as well as managing deterioration risks, such as handling and environmental conditions. Historically, object conservation was focused on the category of fine arts but now many different types of objects are conserved. Each type of object material, typically denoted by organic or inorganic then the specific medium, requires a specialized professional conservator and often requires collaborative work between museum staff, scientists, and conservators.

<span class="mw-page-title-main">Conservation and restoration of silver objects</span> Preservation of heritage collections

The conservation and restoration of silver objects is an activity dedicated to the preservation and protection of objects of historical and personal value made from silver. When applied to cultural heritage this activity is generally undertaken by a conservator-restorer.

<span class="mw-page-title-main">Conservation and restoration of copper-based objects</span>

The conservation and restoration of copper and copper-alloy objects is the preservation and protection of objects of historical and personal value made from copper or copper alloy. When applied to items of cultural heritage, this activity is generally undertaken by a conservator-restorer.

<span class="mw-page-title-main">Conservation and restoration of iron and steel objects</span>

Iron, steel, and ferrous metals constitute a large portion of collections in museums. The conservation and restoration of iron and steel objects is an activity dedicated to the preservation and protection of objects of historical and personal value made from iron or steel. When applied to cultural heritage this activity is generally undertaken by a conservator-restorer. Historically, objects made from iron or steel were created for religious, artistic, technical, military and domestic uses. Though it is generally not possible to completely halt deterioration of any object, the act of conservation and restoration strives to prevent and slow the deterioration of the object as well as protecting the object for future use. One of the first steps in caring for iron is to examine them and determine their state, determine if they are corroding, and consider options for treatment.

The conservation and restoration of outdoor bronze artworks is an activity dedicated to the preservation, protection, and maintenance of bronze objects and artworks that are on view outside. When applied to cultural heritage this activity is generally undertaken by a conservator-restorer.

<span class="mw-page-title-main">Conservation and restoration of outdoor artworks</span>

The conservation and restoration of outdoor artworks is the activity dedicated to the preservation and protection of artworks that are exhibited or permanently installed outside. These works may be made of wood, stone, ceramic material, plastic, bronze, copper, or any other number of materials and may or may not be painted. When applied to cultural heritage this activity is generally undertaken by a conservator-restorer.

The conservation and restoration of leather objects is the process of determining the causes of deterioration, followed by deciding the best course of action for preserving the leather objects for the future.

<span class="mw-page-title-main">Conservation and restoration of lighthouses</span> Preservation of building structures

The conservation and restoration of lighthouses is when lighthouse structures are preserved through detailed examination, cleaning, and in-kind replacement of materials. Given the wide variety of materials used to construct lighthouses, a variety of techniques and considerations are required. Lighthouses alert seagoers of rocky shores nearby and provide landmark navigation. They also act as a physical representation to maritime history and advancement. These historic buildings are prone to deterioration due to their location on rocky outcrops of land near the water, as well as severe weather events, and the continued rise of sea levels. Given these conditions preservation and conservation efforts have increased.

<span class="mw-page-title-main">Conservation and restoration of historic firearms</span> Preservation of heritage collections

The conservation and restoration of historic firearms is preventative care, damage repair, stabilization, replacement of missing components, and potentially the return of the firearm to firing capabilities. It requires an understanding of the different types of historic firearms and knowledge in the care and treatment of organic and inorganic materials, as firearms are composed of many types of materials, from wood to metal, that are fitted together.

<span class="mw-page-title-main">Agents of deterioration</span> Major causes of damage to cultural heritage

The 'ten agents of deterioration' are a conceptual framework developed by the Canadian Conservation Institute (CCI) used to categorise the major causes of change, loss or damage to cultural heritage objects. Also referred to as the 'agents of change', the framework was first developed in the late 1980s and early 1990s. The defined agents reflect and systematise the main chemical and physical deterioration pathways to which most physical material is subject. They are a major influence on the applied practice of conservation, restoration, and collection management, finding particular use in risk management for cultural heritage collections.

References

  1. "Chinese Swords Guide: Restoration".
  2. 1 2 Moffett, Dana L. (1996). "Wax Coatings on Ethnographic Metal Objects: Justifications for Allowing a Tradition to Wane". Journal of the American Institute for Conservation . 35 (1): 1–7. doi:10.2307/3179934. JSTOR   3179934.
  3. "Picreator Enterprises LTD | Renaissance™ Wax". Archived from the original on November 22, 2018. Retrieved 2019-11-29.
  4. Who's Who, 1998, p. 2099
  5. "Renaissance Wax". Picreator Enterprises Ltd. (Manufacturer). Archived from the original on January 20, 2018. Retrieved 2007-04-27.
  6. Horie, C V (1996). Materials for Conservation. Elsevier Science and Technology. ISBN   0-7506-0881-1.