Resonant magnetic perturbations

Last updated

Resonant magnetic perturbations (RMPs) are a special type of magnetic field perturbations used to control burning plasma instabilities called edge-localized modes (ELMs) in magnetic fusion devices such as tokamaks. The efficiency of RMPs for controlling ELMs was first demonstrated on the tokamak DIII-D in 2003. [1]

Contents

Normally the rippled magnetic field will only suppress ELMs for very narrow ranges of the plasma current. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Tokamak</span> Magnetic confinement device used to produce thermonuclear fusion power

A tokamak is a device which uses a powerful magnetic field to confine plasma in the shape of a torus. The tokamak is one of several types of magnetic confinement devices being developed to produce controlled thermonuclear fusion power. As of 2016, it was the leading candidate for a practical fusion reactor. The word "tokamak" is derived from a Russian acronym meaning "toroidal chamber with magnetic coils".

<span class="mw-page-title-main">Plasma stability</span> Degree to which disturbing a plasma system at equilibrium will destabilize it

The stability of a plasma is an important consideration in the study of plasma physics. When a system containing a plasma is at equilibrium, it is possible for certain parts of the plasma to be disturbed by small perturbative forces acting on it. The stability of the system determines if the perturbations will grow, oscillate, or be damped out.

<span class="mw-page-title-main">Reversed field pinch</span> Magnetic field plasma confinement device

A reversed-field pinch (RFP) is a device used to produce and contain near-thermonuclear plasmas. It is a toroidal pinch which uses a unique magnetic field configuration as a scheme to magnetically confine a plasma, primarily to study magnetic confinement fusion. Its magnetic geometry is somewhat different from that of the more common tokamak. As one moves out radially, the portion of the magnetic field pointing toroidally reverses its direction, giving rise to the term reversed field. This configuration can be sustained with comparatively lower fields than that of a tokamak of similar power density. One of the disadvantages of this configuration is that it tends to be more susceptible to non-linear effects and turbulence. This makes it a useful system for studying non-ideal (resistive) magnetohydrodynamics. RFPs are also used in studying astrophysical plasmas, which share many common features.

<span class="mw-page-title-main">Magnetic confinement fusion</span> Approach to controlled thermonuclear fusion using magnetic fields

Magnetic confinement fusion (MCF) is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of controlled fusion research, along with inertial confinement fusion.

<span class="mw-page-title-main">Mega Ampere Spherical Tokamak</span> UK experimental fusion power reactor

<span class="mw-page-title-main">Madison Symmetric Torus</span>

The Madison Symmetric Torus (MST) is a reversed field pinch (RFP) physics experiment with applications to both fusion energy research and astrophysical plasmas.

<span class="mw-page-title-main">DIII-D (tokamak)</span>

DIII-D is a tokamak that has been operated since the late 1980s by General Atomics (GA) in San Diego, USA, for the U.S. Department of Energy. The DIII-D National Fusion Facility is part of the ongoing effort to achieve magnetically confined fusion. The mission of the DIII-D Research Program is to establish the scientific basis for the optimization of the tokamak approach to fusion energy production.

<span class="mw-page-title-main">KSTAR</span> Nuclear fusion research facility in South Korea

The KSTAR is a magnetic fusion device at the Korea Institute of Fusion Energy in Daejeon, South Korea. It is intended to study aspects of magnetic fusion energy that will be pertinent to the ITER fusion project as part of that country's contribution to the ITER effort. The project was approved in 1995, but construction was delayed by the East Asian financial crisis, which weakened the South Korean economy considerably; however, the project's construction phase was completed on September 14, 2007. The first plasma was achieved in June 2008.

<span class="mw-page-title-main">ASDEX Upgrade</span>

ASDEX Upgrade is a divertor tokamak at the Max-Planck-Institut für Plasmaphysik, Garching that went into operation in 1991. At present, it is Germany's second largest fusion experiment after stellarator Wendelstein 7-X.

The beta of a plasma, symbolized by β, is the ratio of the plasma pressure (p = nkBT) to the magnetic pressure (pmag = B²/2μ0). The term is commonly used in studies of the Sun and Earth's magnetic field, and in the field of fusion power designs.

An edge-localized mode (ELM) is a plasma instability occurring in the edge region of a tokamak plasma due to periodic relaxations of the edge transport barrier in high-confinement mode. Each ELM burst is associated with expulsion of particles and energy from the confined plasma into the scrape-off layer. This phenomenon was first observed in the ASDEX tokamak in 1981. Diamagnetic effects in the model equations expand the size of the parameter space in which solutions of repeated sawteeth can be recovered compared to a resistive MHD model. An ELM can expel up to 20 percent of the reactor's energy.

<span class="mw-page-title-main">COMPASS tokamak</span>

COMPASS, short for Compact Assembly, is a compact tokamak fusion energy device originally completed at the Culham Science Centre in 1989, upgraded in 1992, and operated until 2002. It was designed as a flexible research facility dedicated mostly to plasma physics studies in circular and D-shaped plasmas.

High-confinement mode, or H-mode, is an operating regime possible in toroidal magnetic confinement fusion devices – mostly tokamaks, but also in stellarators. In this regime the plasma has a higher energy confinement time.

Jose A. Boedo is a Spanish plasma physicist and a researcher at University of California, San Diego. He is an Elected Fellow of the American Physical Society, which was awarded in 2016 for "his ground-breaking contributions to the studies of plasma drifts and intermittent plasma transport in the peripheral region of tokamaks".

Hartmut Zohm is a German plasma physicist who is known for his work on the ASDEX Upgrade machine. He received the 2014 John Dawson Award and the 2016 Hannes Alfvén Prize for successfully demonstrating that neoclassical tearing modes in tokamaks can be stabilized by electron cyclotron resonance heating, which is an important design consideration for pushing the performance limit of the ITER.

Keith Howard Burrell is an American plasma physicist.

<span class="mw-page-title-main">Tokamak Chauffage Alfvén Brésilien</span> Tokamak at the University of Sao Paulo, Brazil

The Tokamak Chauffage Alfvén Brésilien (TCABR) is a tokamak situated at the University of Sao Paulo (USP), Brazil. TCABR is the largest tokamak in the southern hemisphere and one of the magnetic-confinement devices committed to advancing scientific knowledge in fusion power.

Rajesh Maingi is a physicist known for his expertise in the physics of plasma edges and program leadership in the field of fusion energy. He is currently the head of Tokamak Experimental Sciences at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL). He is a Fellow of both the American Physical Society and the American Nuclear Society and has chaired or co-chaired numerous national and international conferences.

Raffi M. Nazikian is a physicist known for his contributions to nuclear fusion research and plasma physics. He has been associated with the Princeton Plasma Physics Laboratory (PPPL) and has conducted significant work at the DIII-D National Fusion Facility.

Low to High Confinement Mode Transition, more commonly referred to as L-H transition, is a crucial phenomenon in the fields of plasma physics and magnetic confinement fusion, signifying the transition from less efficient plasma confinement to highly efficient modes. The L-H transition, a pivotal milestone in the development of nuclear fusion, enables the confinement of high-temperature plasmas. The transition is dependent on many factors such as density, magnetic field strength, heating method, plasma fueling and edge plasma control, and is made possible through mechanisms such as edge turbulence, E×B shear, edge electric field, and edge current and plasma flow. Researchers studying this field use tools such as Electron Cyclotron Emission, Thomson Scattering, magnetic diagnostics, and Langmuir probes to gauge the PLH and seek to lower this value. This confinement is a necessary condition for sustaining the fusion reactions, which involve the combination of atomic nuclei, leading to the release of vast amounts of energy.

References

  1. T.E. Evans; et al. (2004). "Suppression of Large Edge-Localized Modes in High-Confinement DIII-D Plasmas with a Stochastic Magnetic Boundary". Physical Review Letters . 92 (23): 235003. Bibcode:2004PhRvL..92w5003E. doi:10.1103/PhysRevLett.92.235003. PMID   15245164.
  2. Fusion Power Breakthrough: New Method for Eliminating Damaging Heat Bursts in Toroidal Tokamaks

Further reading