Restricted power series

Last updated

In algebra, the ring of restricted power series is the subring of a formal power series ring that consists of power series whose coefficients approach zero as degree goes to infinity. [1] Over a non-archimedean complete field, the ring is also called a Tate algebra. Quotient rings of the ring are used in the study of a formal algebraic space as well as rigid analysis, the latter over non-archimedean complete fields.

Contents

Over a discrete topological ring, the ring of restricted power series coincides with a polynomial ring; thus, in this sense, the notion of "restricted power series" is a generalization of a polynomial.

Definition

Let A be a linearly topologized ring, separated and complete and the fundamental system of open ideals. Then the ring of restricted power series is defined as the projective limit of the polynomial rings over :

. [2] [3]

In other words, it is the completion of the polynomial ring with respect to the filtration . Sometimes this ring of restricted power series is also denoted by .

Clearly, the ring can be identified with the subring of the formal power series ring that consists of series with coefficients ; i.e., each contains all but finitely many coefficients . Also, the ring satisfies (and in fact is characterized by) the universal property: [4] for (1) each continuous ring homomorphism to a linearly topologized ring , separated and complete and (2) each elements in , there exists a unique continuous ring homomorphism

extending .

Tate algebra

In rigid analysis, when the base ring A is the valuation ring of a complete non-archimedean field , the ring of restricted power series tensored with ,

is called a Tate algebra, named for John Tate. [5] It is equivalently the subring of formal power series which consists of series convergent on , where is the valuation ring in the algebraic closure .

The maximal spectrum of is then a rigid-analytic space that models an affine space in rigid geometry.

Define the Gauss norm of in by

This makes a Banach algebra over k; i.e., a normed algebra that is complete as a metric space. With this norm, any ideal of is closed [6] and thus, if I is radical, the quotient is also a (reduced) Banach algebra called an affinoid algebra.

Some key results are:

As consequence of the division, preparation theorems and Noether normalization, is a Noetherian unique factorization domain of Krull dimension n. [11] An analog of Hilbert's Nullstellensatz is valid: the radical of an ideal is the intersection of all maximal ideals containing the ideal (we say the ring is Jacobson). [12]

Results

Results for polynomial rings such as Hensel's lemma, division algorithms (or the theory of Gröbner bases) are also true for the ring of restricted power series. Throughout the section, let A denote a linearly topologized ring, separated and complete.

Notes

  1. Stacks Project, Tag 0AKZ .
  2. Grothendieck & Dieudonné 1960 , Ch. 0, § 7.5.1.
  3. Bourbaki 2006 , Ch. III, § 4. Definition 2 and Proposition 3.
  4. Grothendieck & Dieudonné 1960 , Ch. 0, § 7.5.3.
  5. Fujiwara & Kato 2018 , Ch 0, just after Proposition 9.3.
  6. Bosch 2014 , § 2.3. Corollary 8
  7. Bosch 2014 , § 2.2. Definition 6.
  8. Bosch 2014 , § 2.2. Theorem 8.
  9. Bosch 2014 , § 2.2. Corollary 9.
  10. Bosch 2014 , § 2.2. Corollary 11.
  11. Bosch 2014 , § 2.2. Proposition 14, Proposition 15, Proposition 17.
  12. Bosch 2014 , § 2.2. Proposition 16.
  13. Bourbaki 2006 , Ch. III, § 4. Theorem 1.

Related Research Articles

In mathematics, a formal series is an infinite sum that is considered independently from any notion of convergence, and can be manipulated with the usual algebraic operations on series.

<span class="mw-page-title-main">Lorentz group</span> Lie group of Lorentz transformations

In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">Differential operator</span> Typically linear operator defined in terms of differentiation of functions

In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function.

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates with coefficients in another ring, often a field.

<span class="mw-page-title-main">Onsager reciprocal relations</span> Relations between flows and forces, or gradients, in thermodynamic systems

In thermodynamics, the Onsager reciprocal relations express the equality of certain ratios between flows and forces in thermodynamic systems out of equilibrium, but where a notion of local equilibrium exists.

In mathematics, a Casimir element is a distinguished element of the center of the universal enveloping algebra of a Lie algebra. A prototypical example is the squared angular momentum operator, which is a Casimir element of the three-dimensional rotation group.

In linear algebra and functional analysis, the min-max theorem, or variational theorem, or Courant–Fischer–Weyl min-max principle, is a result that gives a variational characterization of eigenvalues of compact Hermitian operators on Hilbert spaces. It can be viewed as the starting point of many results of similar nature.

In functional analysis, a branch of mathematics, the Borel functional calculus is a functional calculus, which has particularly broad scope. Thus for instance if T is an operator, applying the squaring function ss2 to T yields the operator T2. Using the functional calculus for larger classes of functions, we can for example define rigorously the "square root" of the (negative) Laplacian operator −Δ or the exponential

In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many primary ideals. The theorem was first proven by Emanuel Lasker for the special case of polynomial rings and convergent power series rings, and was proven in its full generality by Emmy Noether.

<span class="mw-page-title-main">Representation theory of the Lorentz group</span> Representation of the symmetry group of spacetime in special relativity

The Lorentz group is a Lie group of symmetries of the spacetime of special relativity. This group can be realized as a collection of matrices, linear transformations, or unitary operators on some Hilbert space; it has a variety of representations. This group is significant because special relativity together with quantum mechanics are the two physical theories that are most thoroughly established, and the conjunction of these two theories is the study of the infinite-dimensional unitary representations of the Lorentz group. These have both historical importance in mainstream physics, as well as connections to more speculative present-day theories.

In mathematics, specifically in symplectic geometry, the momentum map is a tool associated with a Hamiltonian action of a Lie group on a symplectic manifold, used to construct conserved quantities for the action. The momentum map generalizes the classical notions of linear and angular momentum. It is an essential ingredient in various constructions of symplectic manifolds, including symplectic (Marsden–Weinstein) quotients, discussed below, and symplectic cuts and sums.

In mathematics, the spin representations are particular projective representations of the orthogonal or special orthogonal groups in arbitrary dimension and signature. More precisely, they are two equivalent representations of the spin groups, which are double covers of the special orthogonal groups. They are usually studied over the real or complex numbers, but they can be defined over other fields.

In mathematics, the Plancherel theorem for spherical functions is an important result in the representation theory of semisimple Lie groups, due in its final form to Harish-Chandra. It is a natural generalisation in non-commutative harmonic analysis of the Plancherel formula and Fourier inversion formula in the representation theory of the group of real numbers in classical harmonic analysis and has a similarly close interconnection with the theory of differential equations. It is the special case for zonal spherical functions of the general Plancherel theorem for semisimple Lie groups, also proved by Harish-Chandra. The Plancherel theorem gives the eigenfunction expansion of radial functions for the Laplacian operator on the associated symmetric space X; it also gives the direct integral decomposition into irreducible representations of the regular representation on L2(X). In the case of hyperbolic space, these expansions were known from prior results of Mehler, Weyl and Fock.

In discrete mathematics, ideal lattices are a special class of lattices and a generalization of cyclic lattices. Ideal lattices naturally occur in many parts of number theory, but also in other areas. In particular, they have a significant place in cryptography. Micciancio defined a generalization of cyclic lattices as ideal lattices. They can be used in cryptosystems to decrease by a square root the number of parameters necessary to describe a lattice, making them more efficient. Ideal lattices are a new concept, but similar lattice classes have been used for a long time. For example, cyclic lattices, a special case of ideal lattices, are used in NTRUEncrypt and NTRUSign.

Coherent states have been introduced in a physical context, first as quasi-classical states in quantum mechanics, then as the backbone of quantum optics and they are described in that spirit in the article Coherent states. However, they have generated a huge variety of generalizations, which have led to a tremendous amount of literature in mathematical physics. In this article, we sketch the main directions of research on this line. For further details, we refer to several existing surveys.

In algebra, a generic matrix ring is a sort of a universal matrix ring.

<span class="mw-page-title-main">Lie algebra extension</span> Creating a "larger" Lie algebra from a smaller one, in one of several ways

In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extensione is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.

<span class="mw-page-title-main">Glossary of Lie groups and Lie algebras</span>

This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.

In abstract algebra, specifically the theory of Lie algebras, Serre's theorem states: given a root system , there exists a finite-dimensional semisimple Lie algebra whose root system is the given .

References

See also