Restricted sumset

Last updated

In additive number theory and combinatorics, a restricted sumset has the form

Contents

where are finite nonempty subsets of a field F and is a polynomial over F.

If is a constant non-zero function, for example for any , then is the usual sumset which is denoted by if

When

S is written as which is denoted by if

Note that |S| > 0 if and only if there exist with

Cauchy–Davenport theorem

The Cauchy–Davenport theorem, named after Augustin Louis Cauchy and Harold Davenport, asserts that for any prime p and nonempty subsets A and B of the prime order cyclic group we have the inequality [1] [2] [3]

where , i.e. we're using modular arithmetic. It can be generalised to arbitrary (not necessarily abelian) groups using a Dyson transform. If are subsets of a group , then [4]

where is the size of the smallest nontrivial subgroup of (we set it to if there is no such subgroup).

We may use this to deduce the Erdős–Ginzburg–Ziv theorem: given any sequence of 2n−1 elements in the cyclic group , there are n elements that sum to zero modulo n. (Here n does not need to be prime.) [5] [6]

A direct consequence of the Cauchy-Davenport theorem is: Given any sequence S of p−1 or more nonzero elements, not necessarily distinct, of , every element of can be written as the sum of the elements of some subsequence (possibly empty) of S. [7]

Kneser's theorem generalises this to general abelian groups. [8]

Erdős–Heilbronn conjecture

The Erdős–Heilbronn conjecture posed by Paul Erdős and Hans Heilbronn in 1964 states that if p is a prime and A is a nonempty subset of the field Z/pZ. [9] This was first confirmed by J. A. Dias da Silva and Y. O. Hamidoune in 1994 [10] who showed that

where A is a finite nonempty subset of a field F, and p(F) is a prime p if F is of characteristic p, and p(F) = ∞ if F is of characteristic 0. Various extensions of this result were given by Noga Alon, M. B. Nathanson and I. Ruzsa in 1996, [11] Q. H. Hou and Zhi-Wei Sun in 2002, [12] and G. Karolyi in 2004. [13]

Combinatorial Nullstellensatz

A powerful tool in the study of lower bounds for cardinalities of various restricted sumsets is the following fundamental principle: the combinatorial Nullstellensatz. [14] Let be a polynomial over a field . Suppose that the coefficient of the monomial in is nonzero and is the total degree of . If are finite subsets of with for , then there are such that .

This tool was rooted in a paper of N. Alon and M. Tarsi in 1989, [15] and developed by Alon, Nathanson and Ruzsa in 1995–1996, [11] and reformulated by Alon in 1999. [14]

See also

Related Research Articles

In graph theory, an expander graph is a sparse graph that has strong connectivity properties, quantified using vertex, edge or spectral expansion. Expander constructions have spawned research in pure and applied mathematics, with several applications to complexity theory, design of robust computer networks, and the theory of error-correcting codes.

In mathematics, the infimum of a subset of a partially ordered set is a greatest element in that is less than or equal to each element of if such an element exists. Consequently, the term greatest lower bound is also commonly used. The supremum of a subset of a partially ordered set is the least element in that is greater than or equal to each element of if such an element exists. Consequently, the supremum is also referred to as the least upper bound.

In additive number theory, the Schnirelmann density of a sequence of numbers is a way to measure how "dense" the sequence is. It is named after Russian mathematician Lev Schnirelmann, who was the first to study it.

In multivariable calculus, the implicit function theorem is a tool that allows relations to be converted to functions of several real variables. It does so by representing the relation as the graph of a function. There may not be a single function whose graph can represent the entire relation, but there may be such a function on a restriction of the domain of the relation. The implicit function theorem gives a sufficient condition to ensure that there is such a function.

In number theory, natural density is one method to measure how "large" a subset of the set of natural numbers is. It relies chiefly on the probability of encountering members of the desired subset when combing through the interval [1, n] as n grows large.

In additive combinatorics, Freiman's theorem is a central result which indicates the approximate structure of sets whose sumset is small. It roughly states that if is small, then can be contained in a small generalized arithmetic progression.


In mathematics, a generalized arithmetic progression is a generalization of an arithmetic progression equipped with multiple common differences – whereas an arithmetic progression is generated by a single common difference, a generalized arithmetic progression can be generated by multiple common differences. For example, the sequence is not an arithmetic progression, but is instead generated by starting with 17 and adding either 3 or 5, thus allowing multiple common differences to generate it. A semilinear set generalizes this idea to multiple dimensions -- it is a set of vectors of integers, rather than a set of integers.

Arithmetic Progression:-"There exit a common different that is d that we add to the previous term in output it is called arithmetic progression

In number theory, zero-sum problems are certain kinds of combinatorial problems about the structure of a finite abelian group. Concretely, given a finite abelian group G and a positive integer n, one asks for the smallest value of k such that every sequence of elements of G of size k contains n terms that sum to 0.

The Zarankiewicz problem, an unsolved problem in mathematics, asks for the largest possible number of edges in a bipartite graph that has a given number of vertices and has no complete bipartite subgraphs of a given size. It belongs to the field of extremal graph theory, a branch of combinatorics, and is named after the Polish mathematician Kazimierz Zarankiewicz, who proposed several special cases of the problem in 1951.

Additive number theory is the subfield of number theory concerning the study of subsets of integers and their behavior under addition. More abstractly, the field of additive number theory includes the study of abelian groups and commutative semigroups with an operation of addition. Additive number theory has close ties to combinatorial number theory and the geometry of numbers. Two principal objects of study are the sumset of two subsets A and B of elements from an abelian group G,

In mathematics, the Hilbert projection theorem is a famous result of convex analysis that says that for every vector in a Hilbert space and every nonempty closed convex there exists a unique vector for which is minimized over the vectors ; that is, such that for every

Combinatorial number theory deals with number theoretic problems which involve combinatorial ideas in their formulations or solutions. Paul Erdős is the main founder of this branch of number theory. Typical topics include covering system, zero-sum problems, various restricted sumsets, and arithmetic progressions in a set of integers. Algebraic or analytic methods are powerful in this field.

Additive combinatorics is an area of combinatorics in mathematics. One major area of study in additive combinatorics are inverse problems: given the size of the sumset A + B is small, what can we say about the structures of and ? In the case of the integers, the classical Freiman's theorem provides a partial answer to this question in terms of multi-dimensional arithmetic progressions.

<span class="mw-page-title-main">Dyson's transform</span>

Dyson's transform is a fundamental technique in additive number theory. It was developed by Freeman Dyson as part of his proof of Mann's theorem, is used to prove such fundamental results of Additive Number Theory as the Cauchy-Davenport theorem, and was used by Olivier Ramaré in his work on the Goldbach conjecture that proved that every even integer is the sum of at most 6 primes. The term Dyson's transform for this technique is used by Ramaré. Halberstam and Roth call it the τ-transformation.

Parikh's theorem in theoretical computer science says that if one looks only at the number of occurrences of each terminal symbol in a context-free language, without regard to their order, then the language is indistinguishable from a regular language. It is useful for deciding that strings with a given number of terminals are not accepted by a context-free grammar. It was first proved by Rohit Parikh in 1961 and republished in 1966.

The Erdős–Szemerédi theorem in arithmetic combinatorics states that for every finite set of integers, at least one of , the set of pairwise sums or , the set of pairwise products form a significantly larger set. More precisely, the Erdős–Szemerédi theorem states that there exist positive constants c and such that for any non-empty set

In the branch of mathematics known as additive combinatorics, Kneser's theorem can refer to one of several related theorems regarding the sizes of certain sumsets in abelian groups. These are named after Martin Kneser, who published them in 1953 and 1956. They may be regarded as extensions of the Cauchy–Davenport theorem, which also concerns sumsets in groups but is restricted to groups whose order is a prime number.

In mathematics, the Davenport constantD(G ) is an invariant of a group studied in additive combinatorics, quantifying the size of nonunique factorizations. Given a finite abelian group G, D(G ) is defined as the smallest number such that every sequence of elements of that length contains a non-empty subsequence adding up to 0. In symbols, this is

In mathematics, an approximate group is a subset of a group which behaves like a subgroup "up to a constant error", in a precise quantitative sense. For example, it is required that the set of products of elements in the subset be not much bigger than the subset itself. The notion was introduced in the 2010s but can be traced to older sources in additive combinatorics.

In additive combinatorics, the Plünnecke–Ruzsa inequality is an inequality that bounds the size of various sumsets of a set , given that there is another set so that is not much larger than . A slightly weaker version of this inequality was originally proven and published by Helmut Plünnecke (1970). Imre Ruzsa (1989) later published a simpler proof of the current, more general, version of the inequality. The inequality forms a crucial step in the proof of Freiman's theorem.

References

  1. Nathanson (1996) p.44
  2. Geroldinger & Ruzsa (2009) pp.141–142
  3. Jeffrey Paul Wheeler (2012). "The Cauchy-Davenport Theorem for Finite Groups". arXiv: 1202.1816 [math.CO].
  4. DeVos, Matt (2016). "On a Generalization of the Cauchy-Davenport Theorem". Integers. 16.
  5. Nathanson (1996) p.48
  6. Geroldinger & Ruzsa (2009) p.53
  7. Wolfram's MathWorld, Cauchy-Davenport Theorem, http://mathworld.wolfram.com/Cauchy-DavenportTheorem.html, accessed 20 June 2012.
  8. Geroldinger & Ruzsa (2009) p.143
  9. Nathanson (1996) p.77
  10. Dias da Silva, J. A.; Hamidoune, Y. O. (1994). "Cyclic spaces for Grassmann derivatives and additive theory". Bulletin of the London Mathematical Society . 26 (2): 140–146. doi:10.1112/blms/26.2.140.
  11. 1 2 Alon, Noga; Nathanson, Melvyn B.; Ruzsa, Imre (1996). "The polynomial method and restricted sums of congruence classes" (PDF). Journal of Number Theory . 56 (2): 404–417. doi:10.1006/jnth.1996.0029. MR   1373563.
  12. Hou, Qing-Hu; Sun, Zhi-Wei (2002). "Restricted sums in a field". Acta Arithmetica . 102 (3): 239–249. Bibcode:2002AcAri.102..239H. doi: 10.4064/aa102-3-3 . MR   1884717.
  13. Károlyi, Gyula (2004). "The Erdős–Heilbronn problem in abelian groups". Israel Journal of Mathematics . 139: 349–359. doi:10.1007/BF02787556. MR   2041798. S2CID   33387005.
  14. 1 2 Alon, Noga (1999). "Combinatorial Nullstellensatz" (PDF). Combinatorics, Probability and Computing . 8 (1–2): 7–29. doi:10.1017/S0963548398003411. MR   1684621. S2CID   209877602.
  15. Alon, Noga; Tarsi, Michael (1989). "A nowhere-zero point in linear mappings". Combinatorica . 9 (4): 393–395. doi:10.1007/BF02125351. MR   1054015. S2CID   8208350.