Reticular connective tissue

Last updated

Reticular connective tissue is a type of connective tissue [1] with a network of reticular fibers, made of type III collagen [2] ( reticulum = net or network). Reticular fibers are not unique to reticular connective tissue, but only in this type they are dominant. [3]

Contents

Reticular fibers are synthesized by special fibroblasts called reticular cells. The fibers are thin branching structures.

Location

Reticular connective tissue is found around the kidney, liver, the spleen, and lymph nodes, Peyer's patches as well as in bone marrow. [4]

Function

The fibers form a soft skeleton (stroma) to support the lymphoid organs (lymph node stromal cells, red bone marrow, and spleen).

Adipose tissue is held together by reticular fibers.

Staining

They can be identified in histology by staining with a heavy metal like silver or the PAS stain that stains carbohydrates. Gordon and Gold can also be used.

Appearance

Reticular connective tissue resembles areolar connective tissue, but the only fibers in its matrix are reticular fibers, which form a delicate network along which fibroblasts called reticular cells lie scattered. Although reticular fibers are widely distributed in the body, reticular tissue is limited to certain sites. It forms a labyrinth-like stroma (literally, "bed or "mattress"), or internal framework, that can support many free blood cells (largely lymphocytes) in lymph nodes, the spleen, and red bone marrow.

Classification

There are more than 20 types of reticular fibers. In Reticular Connective Tissue type III collagen/reticular fiber (100-150 nm in diameter) is the major fiber component. It forms the architectural framework of liver, adipose tissue, bone marrow, spleen and basement membrane, to name a few.

See also

Related Research Articles

<span class="mw-page-title-main">Lymphatic system</span> Organ system in vertebrates

The lymphatic system, or lymphoid system, is an organ system in vertebrates that is part of the immune system, and complementary to the circulatory system. It consists of a large network of lymphatic vessels, lymph nodes, lymphoid organs, lymphoid tissues and lymph. Lymph is a clear fluid carried by the lymphatic vessels back to the heart for re-circulation..

<span class="mw-page-title-main">Lymph node</span> Organ of the lymphatic system

A lymph node, or lymph gland, is a kidney-shaped organ of the lymphatic system and the adaptive immune system. A large number of lymph nodes are linked throughout the body by the lymphatic vessels. They are major sites of lymphocytes that include B and T cells. Lymph nodes are important for the proper functioning of the immune system, acting as filters for foreign particles including cancer cells, but have no detoxification function.

<span class="mw-page-title-main">Connective tissue</span> Type of biological tissue in animals

Connective tissue is one of the four primary types of animal tissue, along with epithelial tissue, muscle tissue, and nervous tissue. It develops mostly from the mesenchyme, derived from the mesoderm, the middle embryonic germ layer. Connective tissue is found in between other tissues everywhere in the body, including the nervous system. The three meninges, membranes that envelop the brain and spinal cord, are composed of connective tissue. Most types of connective tissue consists of three main components: elastic and collagen fibers, ground substance, and cells. Blood, and lymph are classed as specialized fluid connective tissues that do not contain fiber. All are immersed in the body water. The cells of connective tissue include fibroblasts, adipocytes, macrophages, mast cells and leucocytes.

<span class="mw-page-title-main">Lamina propria</span> Thin connective layer forming part of the mucous membranes

The lamina propria is a thin layer of connective tissue that forms part of the moist linings known as mucous membranes or mucosae, which line various tubes in the body, such as the respiratory tract, the gastrointestinal tract, and the urogenital tract.

Stroma may refer to:

In immunology, the mononuclear phagocyte system or mononuclear phagocytic system (MPS) also known as the reticuloendothelial system or macrophage system is a part of the immune system that consists of the phagocytic cells located in reticular connective tissue. The cells are primarily monocytes and macrophages, and they accumulate in lymph nodes and the spleen. The Kupffer cells of the liver and tissue histiocytes are also part of the MPS. The mononuclear phagocyte system and the monocyte macrophage system refer to two different entities, often mistakenly understood as one.

<span class="mw-page-title-main">Dermis</span> Layer of skin between the epidermis (with which it makes up the cutis) and subcutaneous tissues

The dermis or corium is a layer of skin between the epidermis and subcutaneous tissues, that primarily consists of dense irregular connective tissue and cushions the body from stress and strain. It is divided into two layers, the superficial area adjacent to the epidermis called the papillary region and a deep thicker area known as the reticular dermis. The dermis is tightly connected to the epidermis through a basement membrane. Structural components of the dermis are collagen, elastic fibers, and extrafibrillar matrix. It also contains mechanoreceptors that provide the sense of touch and thermoreceptors that provide the sense of heat. In addition, hair follicles, sweat glands, sebaceous glands, apocrine glands, lymphatic vessels, nerves and blood vessels are present in the dermis. Those blood vessels provide nourishment and waste removal for both dermal and epidermal cells.

<span class="mw-page-title-main">Loose connective tissue</span> Type of connective tissue in animals

Loose connective tissue, also known as areolar tissue, is a cellular connective tissue with thin and relatively sparse collagen fibers. They have a semi-fluid matrix with lesser proportions of fibers. Its ground substance occupies more volume than the fibers do. It has a viscous to gel-like consistency and plays an important role in the diffusion of oxygen and nutrients from the capillaries that course through this connective tissue as well as in the diffusion of carbon dioxide and metabolic wastes back to the vessels. Moreover, loose connective tissue is primarily located beneath the epithelia that cover the body surfaces and line the internal surfaces of the body. It is also associated with the epithelium of glands and surrounds the smallest blood vessels. This tissue is thus the initial site where pathogenic agents, such as bacteria that have breached an epithelial surface, are challenged and destroyed by cells of the immune system.

A reticular cell is a type of fibroblast that synthesizes collagen alpha-1(III) and uses it to produce reticular fibers. The cell surrounds the fibers with its cytoplasm, isolating them from other tissue components and cells. Reticular cells provide structural support, since they produce and maintain the thin networks of fibers that are a framework for most lymphoid organs.

<span class="mw-page-title-main">Basement membrane</span> Thin fibrous layer between the cells and the adjacent connective tissue in animals

The basement membrane, also known as base membrane is a thin, pliable sheet-like type of extracellular matrix that provides cell and tissue support and acts as a platform for complex signalling. The basement membrane sits between epithelial tissues including mesothelium and endothelium, and the underlying connective tissue.

Stromal cells, or mesenchymal stromal cells, are differentiating cells found in abundance within bone marrow but can also be seen all around the body. Stromal cells can become connective tissue cells of any organ, for example in the uterine mucosa (endometrium), prostate, bone marrow, lymph node and the ovary. They are cells that support the function of the parenchymal cells of that organ. The most common stromal cells include fibroblasts and pericytes. The term stromal comes from Latin stromat-, "bed covering", and Ancient Greek στρῶμα, strôma, "bed".

<span class="mw-page-title-main">Reticular fiber</span> Type of connective tissue in animals

Reticular fibers, reticular fibres or reticulin is a type of fiber in connective tissue composed of type III collagen secreted by reticular cells. They are mainly composed reticulin protein and form a network or mesh. Reticular fibers crosslink to form a fine meshwork (reticulin). This network acts as a supporting mesh in soft tissues such as liver, bone marrow, and the tissues and organs of the lymphatic system.

<span class="mw-page-title-main">Dense connective tissue</span> Type of connective tissue in animals

Dense connective tissue, also called dense fibrous tissue, is a type of connective tissue with fibers as its main matrix element. The fibers are mainly composed of type I collagen. Crowded between the collagen fibers are rows of fibroblasts, fiber-forming cells, that generate the fibers. Dense connective tissue forms strong, rope-like structures such as tendons and ligaments. Tendons attach skeletal muscles to bones; ligaments connect bones to bones at joints. Ligaments are more stretchy and contain more elastic fibers than tendons. Dense connective tissue also make up the lower layers of the skin (dermis), where it is arranged in sheets. In addition, the sclera contains dense connective tissue

<span class="mw-page-title-main">Red pulp</span> Type of tissue in the spleen

The red pulp of the spleen is composed of connective tissue known also as the cords of Billroth and many splenic sinusoids that are engorged with blood, giving it a red color. Its primary function is to filter the blood of antigens, microorganisms, and defective or worn-out red blood cells.

<span class="mw-page-title-main">Stroma (tissue)</span> Part of a tissue or organ with a structural or connective role

Stroma is the part of a tissue or organ with a structural or connective role. It is made up of all the parts without specific functions of the organ - for example, connective tissue, blood vessels, ducts, etc. The other part, the parenchyma, consists of the cells that perform the function of the tissue or organ.

<span class="mw-page-title-main">Stroma of ovary</span>

The stroma of the ovary is a unique type of connective tissue abundantly supplied with blood vessels, consisting for the most part of spindle-shaped stroma cells. These appear similar to fibroblasts. The stroma also contains ordinary connective tissue such as reticular fibers and collagen. Ovarian stroma differs from typical connective tissue in that it contains a high number of cells. The stroma cells are distributed in such a way that the tissue appears to be whorled. Stromal cells associated with maturing follicles may acquire endocrine function and secrete estrogens. The entire ovarian stroma is highly vascular.

In anatomy and histology, the term wandering cell is used to describe cells that are found in connective tissue, but are not fixed in place. This term is used occasionally and usually refers to blood leukocytes in particular mononuclear phagocytes. Frequently, the term refers to circulating macrophages and has been used also for stationary macrophages fixed in tissues (histiocytes), which are sometimes referred to as "resting wandering cells".

<span class="mw-page-title-main">Dense irregular connective tissue</span> Type of connective tissue in animals

Dense irregular connective tissue has fibers that are not arranged in parallel bundles as in dense regular connective tissue.

Lymph node stromal cells are essential to the structure and function of the lymph node whose functions include: creating an internal tissue scaffold for the support of hematopoietic cells; the release of small molecule chemical messengers that facilitate interactions between hematopoietic cells; the facilitation of the migration of hematopoietic cells; the presentation of antigens to immune cells at the initiation of the adaptive immune system; and the homeostasis of lymphocyte numbers. Stromal cells originate from multipotent mesenchymal stem cells.

Reticular describes a set of connective tissue, fibers, etc., in network form such as with cross-link bonds.

References

Notes

  1. " reticular tissue " at Dorland's Medical Dictionary
  2. Strum, Judy M.; Gartner, Leslie P.; Hiatt, James L. (2007). Cell biology and histology . Hagerstwon, MD: Lippincott Williams & Wilkins. p.  83. ISBN   0-7817-8577-4.
  3. "Blue Histology - Connective Tissues" . Retrieved 2008-12-05.
  4. Martini, Frederic H. Fundamentals of Anatomy and Physiology. Seventh Edition. Pearson Benjamin Cummings. United States. 2006.