Revelle factor

Last updated

The Revelle factor (buffer factor) is the ratio of instantaneous change in carbon dioxide (CO2) to the change in total dissolved inorganic carbon (DIC), and is a measure of the resistance to atmospheric CO2 being absorbed by the ocean surface layer. [1] The buffer factor is used to examine the distribution of CO2 between the atmosphere and the ocean, and measures the amount of CO2 that can be dissolved in the mixed surface layer. It is named after the oceanographer Roger Revelle. The Revelle factor describes the ocean's ability to uptake atmospheric CO2, and is typically referenced in global carbon budget analysis and anthropogenic climate change studies.

Contents


Revelle factor =Δ[CO2]/ [CO2] / Δ[DIC]/[DIC] where Δ[CO2] / [CO2] is the instantaneous change in pCO2 and Δ[DIC] / [DIC] is the instantaneous change in dissolved inorganic carbon at the oceans surface.

Thermodynamics

In order to enter the ocean, carbon dioxide gas has to partition into one of the components of carbonic acid: carbonate ion, bicarbonate ion, or protonated carbonic acid, and the product of these many chemical dissociation constants factors into a "back-pressure" that limits how fast the carbon dioxide can enter the surface ocean.

DIC

The species of DIC present in ocean waters are dependent on the pH of the system, and are illustrated by the Bjerrum plot below (Figure 1). Carbonate is dominant in higher pH (basic) environments, whereas carbon dioxide is dominant in lower pH (acidic) environments. Bicarbonate ions are abundant in relatively mid-pH waters. As the pH decreases, most of the DIC will be present as CO2 and hence increases its partial pressure (pCO2), and the buffer factor will increase. [2] An increased buffer factor results in a decreased buffering effect, which could lead to the uptake of more CO2 from the atmosphere, and decreasing the pH even more. [2]

Figure 1: Curves illustrating the molar fraction of carbonate species present in seawater across pH, with salinity set at 5,000ppm, and temperature set to 25 degrees Celsius. Note temperature and salinity affect carbonate species present, and vary with location and season.

Carbonate Bjerrum.gif

DIC and alkalinity govern carbonate and acid-base chemistry in the world's oceans, and their effects on the Revelle factor is no exception. The ratio of DIC to total alkalinity, and the changes in pCO2 are the main cause of Revelle Factor variability. Higher levels of DIC result in a lower Revelle factor, and consequently a larger buffering effect. [3] Higher levels of pCO2 results in a higher Revelle factor, a positive feedback loop, and consequently a smaller buffering effect. Typically, the buffer factor ranges between 8 and 13.

Anthropogenic CO2

The capacity of the ocean waters to take up surplus (anthropogenic) CO2 is inversely proportional to the value of the Revelle factor. Hence, in modern-day oceans, it is possible to see the concentrations of anthropogenic CO2 by measuring the Revelle factor; the lower the Revelle factor, the greater the amount of anthropogenic CO2. [4] Low Revelle factors are typically found in the warmer tropical to subtropical waters, whereas higher Revelle factors are found in the colder high latitude waters of the North Atlantic. The North Pacific has higher Revelle factors, and has lower anthropogenic CO2. This is due to the fact that the alkalinity values in the North Pacific are as much as 100μmol/kg lower than those in the North Atlantic.

The Revelle effect

The Revelle effect describes how only a small fraction of pCO2 is present in ocean water when much larger amounts are added to the atmosphere. Depending on the alkalinity of the water, DIC is either present as CO3, HCO3, or CO2. When the pH is high (basic) the Revelle effect is greatest, causing much of the DIC to exist as HCO3 or CO3, and not CO2. So, the greater the buffering effect (low Revelle Factor) the more DIC occurs as CO3 or HCO3, effectively lowering the pCO2 levels in both the atmosphere and ocean. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Bicarbonate</span> Polyatomic anion

In inorganic chemistry, bicarbonate is an intermediate form in the deprotonation of carbonic acid. It is a polyatomic anion with the chemical formula HCO
3
.

<span class="mw-page-title-main">Carbon dioxide</span> Chemical compound with formula CO₂

Carbon dioxide is a chemical compound with the chemical formula CO2. It is made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature, and as the source of available carbon in the carbon cycle, atmospheric CO2 is the primary carbon source for life on Earth. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water, it forms carbonate and mainly bicarbonate, which causes ocean acidification as atmospheric CO2 levels increase.

<span class="mw-page-title-main">Carbonate</span> Salt or ester of carbonic acid

A carbonate is a salt of carbonic acid, H2CO3, characterized by the presence of the carbonate ion, a polyatomic ion with the formula CO2−3. The word "carbonate" may also refer to a carbonate ester, an organic compound containing the carbonate groupO=C(−O−)2.

<span class="mw-page-title-main">Calcium carbonate</span> Chemical compound

Calcium carbonate is a chemical compound with the chemical formula CaCO3. It is a common substance found in rocks as the minerals calcite and aragonite, most notably in chalk and limestone, eggshells, gastropod shells, shellfish skeletons and pearls. Materials containing much calcium carbonate or resembling it are described as calcareous. Calcium carbonate is the active ingredient in agricultural lime and is produced when calcium ions in hard water react with carbonate ions to form limescale. It has medical use as a calcium supplement or as an antacid, but excessive consumption can be hazardous and cause hypercalcemia and digestive issues.

<span class="mw-page-title-main">Carbonic acid</span> Chemical compound

Carbonic acid is a chemical compound with the chemical formula H2CO3. The molecule rapidly converts to water and carbon dioxide in the presence of water. However, in the absence of water, it is quite stable at room temperature. The interconversion of carbon dioxide and carbonic acid is related to the breathing cycle of animals and the acidification of natural waters.

A hydrogen ion is created when a hydrogen atom loses an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions.

<span class="mw-page-title-main">Alkalinity</span> Capacity of water to resist changes in pH that would make the water more acidic

Alkalinity (from Arabic: القلوية, romanized: al-qaly, lit. 'ashes of the saltwort') is the capacity of water to resist acidification. It should not be confused with basicity, which is an absolute measurement on the pH scale. Alkalinity is the strength of a buffer solution composed of weak acids and their conjugate bases. It is measured by titrating the solution with an acid such as HCl until its pH changes abruptly, or it reaches a known endpoint where that happens. Alkalinity is expressed in units of concentration, such as meq/L (milliequivalents per liter), μeq/kg (microequivalents per kilogram), or mg/L CaCO3 (milligrams per liter of calcium carbonate). Each of these measurements corresponds to an amount of acid added as a titrant.

<span class="mw-page-title-main">Solubility pump</span> Physico-chemical process which transports carbon

In oceanic biogeochemistry, the solubility pump is a physico-chemical process that transports carbon as dissolved inorganic carbon (DIC) from the ocean's surface to its interior.

Calcium bicarbonate, also called calcium hydrogencarbonate, has the chemical formula Ca(HCO3)2. The term does not refer to a known solid compound; it exists only in aqueous solution containing calcium (Ca2+), bicarbonate (HCO
3
), and carbonate (CO2−
3
) ions, together with dissolved carbon dioxide (CO2). The relative concentrations of these carbon-containing species depend on the pH; bicarbonate predominates within the range 6.36–10.25 in fresh water.

<span class="mw-page-title-main">Ocean acidification</span> Decrease of pH levels in the ocean

Ocean acidification is the ongoing decrease in the pH of the Earth's ocean. Over the past 200 years, the rapid increase in anthropogenic CO2 (carbon dioxide) production has led to an increase in the acidity of the Earth’s oceans. Between 1950 and 2020, the average pH of the ocean surface fell from approximately 8.15 to 8.05. Carbon dioxide emissions from human activities are the primary cause of ocean acidification, with atmospheric carbon dioxide (CO2) levels exceeding 410 ppm (in 2020). CO2 from the atmosphere is absorbed by the oceans. This chemical reaction produces carbonic acid (H2CO3) which dissociates into a bicarbonate ion (HCO−3) and a hydrogen ion (H+). The presence of free hydrogen ions (H+) lowers the pH of the ocean, increasing acidity (this does not mean that seawater is acidic yet; it is still alkaline, with a pH higher than 8). Marine calcifying organisms, such as mollusks and corals, are especially vulnerable because they rely on calcium carbonate to build shells and skeletons.

The carbonate compensation depth (CCD) is the depth, in the oceans, at which the rate of supply of calcium carbonates matches the rate of solvation. That is, solvation 'compensates' supply. Below the CCD solvation is faster, so that carbonate particles dissolve and the carbonate shells (tests) of animals are not preserved. Carbonate particles cannot accumulate in the sediments where the sea floor is below this depth.

<span class="mw-page-title-main">Calcium reactor</span>

A calcium reactor is an efficient method to supply calcium and trace elements to a reef aquarium. Reactors may be used in elaborate freshwater and brackish aquariums where freshwater clams and other invertebrates need a constant supply of calcium.

<span class="mw-page-title-main">Carbonate–silicate cycle</span> Geochemical transformation of silicate rocks

The carbonate–silicate geochemical cycle, also known as the inorganic carbon cycle, describes the long-term transformation of silicate rocks to carbonate rocks by weathering and sedimentation, and the transformation of carbonate rocks back into silicate rocks by metamorphism and volcanism. Carbon dioxide is removed from the atmosphere during burial of weathered minerals and returned to the atmosphere through volcanism. On million-year time scales, the carbonate-silicate cycle is a key factor in controlling Earth's climate because it regulates carbon dioxide levels and therefore global temperature.

<span class="mw-page-title-main">Oceanic carbon cycle</span> Ocean/atmosphere carbon exchange process

The oceanic carbon cycle is composed of processes that exchange carbon between various pools within the ocean as well as between the atmosphere, Earth interior, and the seafloor. The carbon cycle is a result of many interacting forces across multiple time and space scales that circulates carbon around the planet, ensuring that carbon is available globally. The Oceanic carbon cycle is a central process to the global carbon cycle and contains both inorganic carbon and organic carbon. Part of the marine carbon cycle transforms carbon between non-living and living matter.

<span class="mw-page-title-main">Shell growth in estuaries</span>

Shell growth in estuaries is an aspect of marine biology that has attracted a number of scientific research studies. Many groups of marine organisms produce calcified exoskeletons, commonly known as shells, hard calcium carbonate structures which the organisms rely on for various specialized structural and defensive purposes. The rate at which these shells form is greatly influenced by physical and chemical characteristics of the water in which these organisms live. Estuaries are dynamic habitats which expose their inhabitants to a wide array of rapidly changing physical conditions, exaggerating the differences in physical and chemical properties of the water.

Estuarine acidification happens when the pH balance of water in coastal marine ecosystems, specifically those of estuaries, decreases. Water, generally considered neutral on the pH scale, normally perfectly balanced between alkalinity and acidity. While ocean acidification occurs due to the ongoing decrease in the pH of the Earth's oceans, caused by the absorption of carbon dioxide (CO2) from the atmosphere, pH change in estuaries is more complicated than in the open ocean due to direct impacts from land run-off, human impact, and coastal current dynamics. In the ocean, wave and wind movement allows carbon dioxide (CO2) to mixes with water (H2O) forming carbonic acid (H2CO3). Through wave motion this chemical bond is mixed up, allowing for the further break of the bond, eventually becoming carbonate (CO3) which is basic and helps form shells for ocean creatures, and two hydron molecules. This creates the potential for acidic threat since hydron ions readily bond with any Lewis Structure to form an acidic bond. This is referred to as an oxidation-reduction reaction.

<span class="mw-page-title-main">Freshwater acidification</span>

Freshwater acidification occurs when acidic inputs enter a body of fresh water through the weathering of rocks, invasion of acidifying gas, or by the reduction of acid anions, like sulfate and nitrate within a lake. Freshwater acidification is primarily caused by sulfur oxides (SOx) and nitrogen oxides (NOx) entering the water from atmospheric depositions and soil leaching. Carbonic acid and dissolved carbon dioxide can also enter freshwaters, in a similar manner associated with runoff, through carbon dioxide-rich soils. Runoff that contains these compounds may incorporate acidifying hydrogen ions and inorganic aluminum, which can be toxic to marine organisms. Acid rain is also a contributor to freshwater acidification. It is created when SOx and NOx react with water, oxygen, and other oxidants within the clouds.

<span class="mw-page-title-main">Ocean acidification in the Arctic Ocean</span>

The Arctic Ocean covers an area of 14,056,000 square kilometers, and supports a diverse and important socioeconomic food web of organisms, despite its average water temperature being 32 degrees Fahrenheit. Over the last three decades, the Arctic Ocean has experienced drastic changes due to climate change. One of the changes is in the acidity levels of the ocean, which have been consistently increasing at twice the rate of the Pacific and Atlantic oceans. Arctic Ocean acidification is a result of feedback from climate system mechanisms, and is having negative impacts on Arctic Ocean ecosystems and the organisms that live within them.

<span class="mw-page-title-main">Total inorganic carbon</span> Sum of the inorganic carbon species

Total inorganic carbon is the sum of the inorganic carbon species.

<span class="mw-page-title-main">Particulate inorganic carbon</span>

Particulate inorganic carbon (PIC) can be contrasted with dissolved inorganic carbon (DIC), the other form of inorganic carbon found in the ocean. These distinctions are important in chemical oceanography. Particulate inorganic carbon is sometimes called suspended inorganic carbon. In operational terms, it is defined as the inorganic carbon in particulate form that is too large to pass through the filter used to separate dissolved inorganic carbon.

References

  1. McCracken, Mark. "Definition of Buffer Factor (Revelle Factor)" (website). Science. Retrieved 2015-11-24.
  2. 1 2 "7.3.4.2 Carbon Cycle Feedbacks to Changes in Atmospheric Carbon Dioxide" (.pdf). 2010. Retrieved 2019-02-15.
  3. 1 2 Egleston, Eric S.; Sabine, Christopher L.; Morel, François M. M. (March 2010). "Revelle revisited: Buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity" (PDF). Global Biogeochemical Cycles. 24 (1): n/a. Bibcode:2010GBioC..24.1002E. doi:10.1029/2008GB003407. S2CID   93920859. Archived from the original (PDF) on 2015-04-13.
  4. Sabine, Christopher L.; Richard A. Feely; Nicolas Gruber; Robert M. Key; Kitack Lee; John L. Bullister; Rik Wanninkhof; C.S. Wong; Douglas W.R. Wallace; Bronte Tilbrook; Frank J. Millero; Tsung-Hung Peng; Alexander Kozyr; Tsueno Ono; Aida F. Rios (2004). "The Oceanic Sink for CO2" (PDF). Science. 305 (367): 367–71. Bibcode:2004Sci...305..367S. doi:10.1126/science.1097403. hdl: 10261/52596 . PMID   15256665. S2CID   5607281.