Reverberation mapping

Last updated
Animation of the principle behind reverberation mapping (or echo mapping). Light from the accretion disk around a supermassive black hole is scattered off the surrounding broad line region, causing a delayed echo at redder wavelengths.

Reverberation mapping (or Echo mapping) is an astrophysical technique for measuring the structure of the broad-line region (BLR) around a supermassive black hole at the center of an active galaxy, and thus estimating the hole's mass. It is considered a "primary" mass estimation technique, i.e., the mass is measured directly from the motion that its gravitational force induces in the nearby gas. [1]

Newton's law of gravity defines a direct relation between the mass of a central object and the speed of a smaller object in orbit around the central mass. Thus, for matter orbiting a black hole, the black-hole mass is related by the formula

to the RMS velocity ΔV of gas moving near the black hole in the broad emission-line region, measured from the Doppler broadening of the gaseous emission lines. In this formula, RBLR is the radius of the broad-line region; G is the constant of gravitation; and f is a poorly known "form factor" that depends on the shape of the BLR.

While ΔV can be measured directly using spectroscopy, the necessary determination of RBLR is much less straightforward. This is where reverberation mapping comes into play. [2] It utilizes the fact that the emission-line fluxes vary strongly in response to changes in the continuum, i.e., the light from the accretion disk near the black hole. Put simply, if the brightness of the accretion disk varies, the emission lines, which are excited in response to the accretion disk's light, will "reverberate", that is, vary in response. But it will take some time for light from the accretion disk to reach the broad-line region. Thus, the emission-line response is delayed with respect to changes in the continuum. Assuming that this delay is solely due to light travel times, the distance traveled by the light, corresponding to the radius of the broad emission-line region, can be measured.

Only a small handful (less than 40) of active galactic nuclei have been accurately "mapped" in this way. An alternative approach is to use an empirical correlation between RBLR and the continuum luminosity. [1]

Another uncertainty is the value of f. In principle, the response of the BLR to variations in the continuum could be used to map out the three-dimensional structure of the BLR. In practice, the amount and quality of data required to carry out such a deconvolution is prohibitive. Until about 2004, f was estimated ab initio based on simple models for the structure of the BLR. More recently, the value of f has been determined so as to bring the M–sigma relation for active galaxies into the best possible agreement with the M–sigma relation for quiescent galaxies. [1] When f is determined in this way, reverberation mapping becomes a "secondary", rather than "primary", mass estimation technique.

References and notes

  1. 1 2 3 Merritt, David (2013). Dynamics and Evolution of Galactic Nuclei. Princeton, NJ: Princeton University Press. ISBN   9781400846122.
  2. B. M. Peterson, K. Horne, Reverberation Mapping of Active Galactic Nuclei (2004).

Related Research Articles

<span class="mw-page-title-main">Quasar</span> Active galactic nucleus containing a supermassive black hole

A quasar is an extremely luminous active galactic nucleus (AGN). It is sometimes known as a quasi-stellar object, abbreviated QSO. The emission from an AGN is powered by accretion onto a supermassive black hole with a mass ranging from millions to tens of billions of solar masses, surrounded by a gaseous accretion disc. Gas in the disc falling towards the black hole heats up and releases energy in the form of electromagnetic radiation. The radiant energy of quasars is enormous; the most powerful quasars have luminosities thousands of times greater than that of a galaxy such as the Milky Way. Quasars are usually categorized as a subclass of the more general category of AGN. The redshifts of quasars are of cosmological origin.

An active galactic nucleus (AGN) is a compact region at the center of a galaxy that emits a significant amount of energy across the electromagnetic spectrum, with characteristics indicating that this luminosity is not produced by the stars. Such excess, non-stellar emissions have been observed in the radio, microwave, infrared, optical, ultra-violet, X-ray and gamma ray wavebands. A galaxy hosting an AGN is called an active galaxy. The non-stellar radiation from an AGN is theorized to result from the accretion of matter by a supermassive black hole at the center of its host galaxy.

<span class="mw-page-title-main">Seyfert galaxy</span> Class of active galaxies with very bright nuclei

Seyfert galaxies are one of the two largest groups of active galaxies, along with quasar host galaxies. They have quasar-like nuclei with very high surface brightnesses whose spectra reveal strong, high-ionisation emission lines, but unlike quasars, their host galaxies are clearly detectable.

<span class="mw-page-title-main">Supermassive black hole</span> Largest type of black hole

A supermassive black hole is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions, of times the mass of the Sun (M). Black holes are a class of astronomical objects that have undergone gravitational collapse, leaving behind spheroidal regions of space from which nothing can escape, including light. Observational evidence indicates that almost every large galaxy has a supermassive black hole at its center. For example, the Milky Way galaxy has a supermassive black hole at its center, corresponding to the radio source Sagittarius A*. Accretion of interstellar gas onto supermassive black holes is the process responsible for powering active galactic nuclei (AGNs) and quasars.

<span class="mw-page-title-main">Blazar</span> Very compact quasi-stellar radio source

A blazar is an active galactic nucleus (AGN) with a relativistic jet directed very nearly towards an observer. Relativistic beaming of electromagnetic radiation from the jet makes blazars appear much brighter than they would be if the jet were pointed in a direction away from Earth. Blazars are powerful sources of emission across the electromagnetic spectrum and are observed to be sources of high-energy gamma ray photons. Blazars are highly variable sources, often undergoing rapid and dramatic fluctuations in brightness on short timescales. Some blazar jets appear to exhibit superluminal motion, another consequence of material in the jet traveling toward the observer at nearly the speed of light.

<span class="mw-page-title-main">Intermediate-mass black hole</span> Class of black holes with a mass range of 100 to 100000 solar masses

An intermediate-mass black hole (IMBH) is a class of black hole with mass in the range of one hundred to one hundred thousand (102–105) solar masses: significantly higher than stellar black holes but lower than the hundred thousand to more than one billion (105–109) solar mass supermassive black holes. Several IMBH candidate objects have been discovered in the Milky Way galaxy and others nearby, based on indirect gas cloud velocity and accretion disk spectra observations of various evidentiary strength.

<span class="mw-page-title-main">NGC 5548</span> Type I Seyfert galaxy in the constellation Boötes

NGC 5548 is a Type I Seyfert galaxy with a bright, active nucleus. This activity is caused by matter flowing onto a 65 million solar mass (M) supermassive black hole at the core. Morphologically, this is an unbarred lenticular galaxy with tightly-wound spiral arms, while shell and tidal tail features suggest that it has undergone a cosmologically-recent merger or interaction event. NGC 5548 is approximately 245 million light years away and appears in the constellation Boötes. The apparent visual magnitude of NGC 5548 is approximately 13.3 in the V band.

<span class="mw-page-title-main">APM 08279+5255</span> Quasar

APM 08279+5255 is a very distant, broad absorption line quasar located in the constellation Lynx. It is magnified and split into multiple images by the gravitational lensing effect of a foreground galaxy through which its light passes. It appears to be a giant elliptical galaxy with a supermassive black hole and associated accretion disk. It possesses large regions of hot dust and molecular gas, as well as regions with starburst activity.

<span class="mw-page-title-main">M–sigma relation</span>

The M–sigmarelation is an empirical correlation between the stellar velocity dispersion σ of a galaxy bulge and the mass M of the supermassive black hole at its center.

<span class="mw-page-title-main">NGC 3783</span> Galaxy in the constellation Centaurus

NGC 3783 is a barred spiral galaxy located about 135 million light years away in the constellation Centaurus. It is inclined by an angle of 23° to the line of sight from the Earth along a position angle of about 163°. The morphological classification of SBa indicates a bar structure across the center (B) and tightly-wound spiral arms (a). Although not shown by this classification, observers note the galaxy has a luminous inner ring surrounding the bar structure. The bright compact nucleus is active and categorized as a Seyfert 1 type. This nucleus is a strong source of X-ray emission and undergoes variations in emission across the electromagnetic spectrum.

<span class="mw-page-title-main">Accretion disk</span> Structure formed by diffuse material in orbital motion around a massive central body

An accretion disk is a structure formed by diffuse material in orbital motion around a massive central body. The central body is most frequently a star. Friction, uneven irradiance, magnetohydrodynamic effects, and other forces induce instabilities causing orbiting material in the disk to spiral inward toward the central body. Gravitational and frictional forces compress and raise the temperature of the material, causing the emission of electromagnetic radiation. The frequency range of that radiation depends on the central object's mass. Accretion disks of young stars and protostars radiate in the infrared; those around neutron stars and black holes in the X-ray part of the spectrum. The study of oscillation modes in accretion disks is referred to as diskoseismology.

<span class="mw-page-title-main">TON 618</span> Quasar and Lyman-alpha blob in the constellation Canes Venatici

TON 618 is a hyperluminous, broad-absorption-line, radio-loud quasar, and Lyman-alpha blob located near the border of the constellations Canes Venatici and Coma Berenices, with the projected comoving distance of approximately 18.2 billion light-years from Earth. It possesses one of the most massive black holes ever found, at 40.7 billion M.

<span class="mw-page-title-main">NGC 7469</span> Galaxy located in the constellation Pegasus

NGC 7469 is an intermediate spiral galaxy in the constellation of Pegasus. NGC 7469 is located about 200 million light-years away from Earth, which means, given its apparent dimensions, that NGC 7469 is approximately 90,000 light-years across. It was discovered by William Herschel on November 12, 1784.

<span class="mw-page-title-main">NGC 3367</span> Spiral galaxy in the constellation Leo

NGC 3367 is a barred spiral galaxy located in the constellation Leo. It is located at a distance of about 120 million light years from Earth, which, given its apparent dimensions, means that NGC 3367 is about 85,000 light years across. It was discovered by William Herschel on March 19, 1784.

<span class="mw-page-title-main">NGC 7213</span> Galaxy in the constellation Grus

NGC 7213 is a lenticular galaxy located in the constellation Grus. It is located at a distance of circa 70 million light-years from Earth, which, given its apparent dimensions, means that NGC 7213 is about 75,000 light-years across. It was discovered by John Herschel on September 30, 1834. It is an active galaxy with characteristics between a type I Seyfert galaxy and LINER.

<span class="mw-page-title-main">IC 1459</span> Elliptical galaxy in the constellation of Grus

IC 1459 is an elliptical galaxy located in the constellation Grus. It is located at a distance of circa 85 million light-years from Earth, which, given its apparent dimensions, means that IC 1459 is about 130,000 light-years across. It was discovered by Edward Emerson Barnard in 1892.

<span class="mw-page-title-main">NGC 5506</span> Galaxy in the constellation of Virgo

NGC 5506 is a spiral galaxy located in the constellation Virgo. It is located at a distance of about 75 million light years from Earth, which, given its apparent dimensions, means that NGC 5506 is about 80,000 light years across. It was discovered by William Herschel on April 15, 1787. It is a Seyfert galaxy.

<span class="mw-page-title-main">Markarian 590</span> Galaxy in the constellation of Cetus

Markarian 590, also known as NGC 863, NGC 866, and NGC 885, is a spiral galaxy located in the constellation Cetus. It is located at a distance of about 300 million light years from Earth, which, given its apparent dimensions, means that NGC 863 is about 110,000 light years across. It is a change looking Seyfert galaxy.

<span class="mw-page-title-main">3C 120</span> Galaxy in the constellation Taurus

3C 120, also known as Markarian 1506, is an active galaxy located in the constellation of Taurus, at a distance of about 420 million light years. It has been categorised as a type I Seyfert galaxy and a broad-line radio galaxy. 3C 120 has been found to be a variable source in all wavelengths and hosts a superluminal jet.

<span class="mw-page-title-main">Markarian 817</span> Barred spiral galaxy in the constellation Draco

Markarian 817 is a barred spiral galaxy located in the constellation Draco. It is located 456 million light-years from Earth, which, given its apparent dimensions, means that Markarian 817 is about 80,000 light-years across. It is a Seyfert galaxy.