Ribbon category

Last updated

In mathematics, a ribbon category, also called a tortile category, is a particular type of braided monoidal category.

Contents

Definition

A monoidal category is, loosely speaking, a category equipped with a notion resembling the tensor product (of vector spaces, say). That is, for any two objects , there is an object . The assignment is supposed to be functorial and needs to require a number of further properties such as a unit object 1 and an associativity isomorphism. Such a category is called braided if there are isomorphisms

A braided monoidal category is called a ribbon category if the category is left rigid and has a family of twists. The former means that for each object there is another object (called the left dual), , with maps

such that the compositions

equals the identity of , and similarly with . The twists are maps

,

such that

To be a ribbon category, the duals have to be thus compatible with the braiding and the twists.

Concrete Example

Suppose that is a finite-dimensional vector space spanned by the basis vectors . We assign to the dual space spanned by the basis vectors , such a given is assigned the dual . Then let us define

and its dual

Then indeed we find that (for example)

Other Examples

The name ribbon category is motivated by a graphical depiction of morphisms. [2]

Variant

A strongly ribbon category is a ribbon category C equipped with a dagger structure such that the functor †: C op C coherently preserves the ribbon structure.

Related Research Articles

Pauli matrices Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups and a sequence of homomorphisms between consecutive groups such that the image of each homomorphism is included in the kernel of the next. Associated to a chain complex is its homology, which describes how the images are included in the kernels.

In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously an algebra and a coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antiautomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations.

In mathematics, a monoidal category is a category equipped with a bifunctor

In algebraic topology, a branch of mathematics, a spectrum is an object representing a generalized cohomology theory. This means that, given a cohomology theory

,

In mathematics, especially in category theory, a closed monoidal category is a category that is both a monoidal category and a closed category in such a way that the structures are compatible.

In mathematics, a commutativity constraint on a monoidal category is a choice of isomorphism for each pair of objects A and B which form a "natural family." In particular, to have a commutativity constraint, one must have for all pairs of objects .

In mathematics, a nuclear operator is a compact operator for which a trace may be defined, such that the trace is finite and independent of the choice of basis . Nuclear operators are essentially the same as trace-class operators, though most authors reserve the term "trace-class operator" for the special case of nuclear operators on Hilbert spaces.

In mathematics, an operad is a structure that consists of abstract operations, each one having a fixed finite number of inputs (arguments) and one output, as well as a specification of how to compose these operations. Given an operad , one defines an algebra over to be a set together with concrete operations on this set which behave just like the abstract operations of . For instance, there is a Lie operad such that the algebras over are precisely the Lie algebras; in a sense abstractly encodes the operations that are common to all Lie algebras. An operad is to its algebras as a group is to its group representations.

In mathematics, a super vector space is a -graded vector space, that is, a vector space over a field with a given decomposition of subspaces of grade and grade . The study of super vector spaces and their generalizations is sometimes called super linear algebra. These objects find their principal application in theoretical physics where they are used to describe the various algebraic aspects of supersymmetry.

In mathematics, a *-autonomous category C is a symmetric monoidal closed category equipped with a dualizing object . The concept is also referred to as Grothendieck—Verdier category in view of its relation to the notion of Verdier duality.

In category theory, string diagrams are a way of representing morphisms in monoidal categories, or more generally 2-cells in 2-categories.

In category theory, monoidal functors are functors between monoidal categories which preserve the monoidal structure. More specifically, a monoidal functor between two monoidal categories consists of a functor between the categories, along with two coherence maps—a natural transformation and a morphism that preserve monoidal multiplication and unit, respectively. Mathematicians require these coherence maps to satisfy additional properties depending on how strictly they want to preserve the monoidal structure; each of these properties gives rise to a slightly different definition of monoidal functors

Monoidal natural transformation

Suppose that and are two monoidal categories and

In mathematics, in the field of algebraic topology, the Eilenberg–Moore spectral sequence addresses the calculation of the homology groups of a pullback over a fibration. The spectral sequence formulates the calculation from knowledge of the homology of the remaining spaces. Samuel Eilenberg and John C. Moore's original paper addresses this for singular homology.

In category theory, a branch of mathematics, the center is a variant of the notion of the center of a monoid, group, or ring to a category.

The derivatives of scalars, vectors, and second-order tensors with respect to second-order tensors are of considerable use in continuum mechanics. These derivatives are used in the theories of nonlinear elasticity and plasticity, particularly in the design of algorithms for numerical simulations.

In mathematics, the Kodaira–Spencer map, introduced by Kunihiko Kodaira and Donald C. Spencer, is a map associated to a deformation of a scheme or complex manifold X, taking a tangent space of a point of the deformation space to the first cohomology group of the sheaf of vector fields on X.

Curvilinear coordinates can be formulated in tensor calculus, with important applications in physics and engineering, particularly for describing transportation of physical quantities and deformation of matter in fluid mechanics and continuum mechanics.

In algebra, the Yoneda product is the pairing between Ext groups of modules:

References

  1. Turaev 2020 , XI. An algebraic construction of modular categories
  2. Turaev 2020 , p. 25