Richard R. Freeman

Last updated
ISBN 978-0198726500

Selected articles

Related Research Articles

Atomic, molecular, and optical physics (AMO) is the study of matter–matter and light–matter interactions, at the scale of one or a few atoms and energy scales around several electron volts. The three areas are closely interrelated. AMO theory includes classical, semi-classical and quantum treatments. Typically, the theory and applications of emission, absorption, scattering of electromagnetic radiation (light) from excited atoms and molecules, analysis of spectroscopy, generation of lasers and masers, and the optical properties of matter in general, fall into these categories.

<span class="mw-page-title-main">Ionization</span> Process by which atoms or molecules acquire charge by gaining or losing electrons

Ionization is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule is called an ion. Ionization can result from the loss of an electron after collisions with subatomic particles, collisions with other atoms, molecules and ions, or through the interaction with electromagnetic radiation. Heterolytic bond cleavage and heterolytic substitution reactions can result in the formation of ion pairs. Ionization can occur through radioactive decay by the internal conversion process, in which an excited nucleus transfers its energy to one of the inner-shell electrons causing it to be ejected.

Plasma diagnostics are a pool of methods, instruments, and experimental techniques used to measure properties of a plasma, such as plasma components' density, distribution function over energy (temperature), their spatial profiles and dynamics, which enable to derive plasma parameters.

<span class="mw-page-title-main">Coulomb explosion</span> Injection of EM radiation into a solid, resulting in bond breakage

A Coulombic explosion is a condensed-matter physics process in which a molecule or crystal lattice is destroyed by the Coulombic repulsion between its constituent atoms. Coulombic explosions are a prominent technique in laser-based machining, and appear naturally in certain high-energy reactions.

<span class="mw-page-title-main">Rydberg atom</span> Excited atomic quantum state with high principal quantum number (n)

A Rydberg atom is an excited atom with one or more electrons that have a very high principal quantum number, n. The higher the value of n, the farther the electron is from the nucleus, on average. Rydberg atoms have a number of peculiar properties including an exaggerated response to electric and magnetic fields, long decay periods and electron wavefunctions that approximate, under some conditions, classical orbits of electrons about the nuclei. The core electrons shield the outer electron from the electric field of the nucleus such that, from a distance, the electric potential looks identical to that experienced by the electron in a hydrogen atom.

<span class="mw-page-title-main">Madison Symmetric Torus</span>

The Madison Symmetric Torus (MST) is a reversed field pinch (RFP) physics experiment with applications to both fusion energy research and astrophysical plasmas.

Charles J. Joachain is a Belgian physicist.

<span class="mw-page-title-main">Extreme ultraviolet</span> Ultraviolet light with a wavelength of 10–121nm

Extreme ultraviolet radiation or high-energy ultraviolet radiation is electromagnetic radiation in the part of the electromagnetic spectrum spanning wavelengths shorter that the hydrogen Lyman-alpha line from 121 nm down to the X-ray band of 10 nm. By the Planck–Einstein equation the EUV photons have energies from 10.26 eV up to 124.24 eV where we enter the X-ray energies. EUV is naturally generated by the solar corona and artificially by plasma, high harmonic generation sources and synchrotron light sources. Since UVC extends to 100 nm, there is some overlap in the terms.

<span class="mw-page-title-main">Resonance-enhanced multiphoton ionization</span> Spectroscopy technique

Resonance-enhanced multiphoton ionization (REMPI) is a technique applied to the spectroscopy of atoms and small molecules. In practice, a tunable laser can be used to access an excited intermediate state. The selection rules associated with a two-photon or other multiphoton photoabsorption are different from the selection rules for a single photon transition. The REMPI technique typically involves a resonant single or multiple photon absorption to an electronically excited intermediate state followed by another photon which ionizes the atom or molecule. The light intensity to achieve a typical multiphoton transition is generally significantly larger than the light intensity to achieve a single photon photoabsorption. Because of this, subsequent photoabsorption is often very likely. An ion and a free electron will result if the photons have imparted enough energy to exceed the ionization threshold energy of the system. In many cases, REMPI provides spectroscopic information that can be unavailable to single photon spectroscopic methods, for example rotational structure in molecules is easily seen with this technique.

<span class="mw-page-title-main">Gurgen Askaryan</span> Soviet-Armenian physicist

Gurgen Ashotovich Askaryan was a prominent Soviet - Armenian physicist, famous for his discovery of the self-focusing of light, pioneering studies of light-matter interactions, and the discovery and investigation of the interaction of high-energy particles with condensed matter.

High-harmonic generation (HHG) is a non-linear process during which a target is illuminated by an intense laser pulse. Under such conditions, the sample will emit the high harmonics of the generation beam. Due to the coherent nature of the process, high-harmonics generation is a prerequisite of attosecond physics.

<span class="mw-page-title-main">Photoionization mode</span>

A photoionization mode is a mode of interaction between a laser beam and matter involving photoionization.

<span class="mw-page-title-main">Self-focusing</span>

Self-focusing is a non-linear optical process induced by the change in refractive index of materials exposed to intense electromagnetic radiation. A medium whose refractive index increases with the electric field intensity acts as a focusing lens for an electromagnetic wave characterized by an initial transverse intensity gradient, as in a laser beam. The peak intensity of the self-focused region keeps increasing as the wave travels through the medium, until defocusing effects or medium damage interrupt this process. Self-focusing of light was discovered by Gurgen Askaryan.

An X-ray laser can be created by several methods either in hot, dense plasmas or as a free-electron laser in an accelerator. This article describes the x-ray lasers in plasmas, only.

<span class="mw-page-title-main">Particle accelerator</span> Research apparatus for particle physics

A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle physics. Accelerators are also used as synchrotron light sources for the study of condensed matter physics. Smaller particle accelerators are used in a wide variety of applications, including particle therapy for oncological purposes, radioisotope production for medical diagnostics, ion implanters for the manufacture of semiconductors, and accelerator mass spectrometers for measurements of rare isotopes such as radiocarbon.

Photoelectrochemical processes are processes in photoelectrochemistry; they usually involve transforming light into other forms of energy. These processes apply to photochemistry, optically pumped lasers, sensitized solar cells, luminescence, and photochromism.

Double ionization is a process of formation of doubly charged ions when laser radiation is exerted on neutral atoms or molecules. Double ionization is usually less probable than single-electron ionization. Two types of double ionization are distinguished: sequential and non-sequential.

The index of physics articles is split into multiple pages due to its size.

<span class="mw-page-title-main">Philip H. Bucksbaum</span> American atomic physicist

Philip H. Bucksbaum is an American atomic physicist, the Marguerite Blake Wilbur Professor in Natural Science in the Departments of Physics, Applied Physics, and Photon Science at Stanford University and the SLAC National Accelerator Laboratory. He also directs the Stanford PULSE Institute.

Phillip A. Sprangle is an American physicist who specializes in the applications of plasma physics. He is known for his work involving the propagation of high-intensity laser beams in the atmosphere, the interaction of ultra-short laser pulses from high-power lasers with matter, nonlinear optics and nonlinear plasma physics, free electron lasers, and lasers in particle acceleration.

References

  1. "Richard Freeman".
  2. 1 2 "Richard R. Freeman".
  3. "Electromagnetic Radiation".
  4. 1 2 "APS Fellow Archive".
  5. 1 2 "Richard R. Freeman" (PDF).
  6. "OSU Nabs New Dean for Math and Sciences".
  7. "Professor Richard R. Freeman Takes One Year Sabbatical".
  8. Freeman, Richard R.; Kleppner, Daniel (1976). "Core polarization and quantum defects in high-angular-momentum states of alkali atoms". Physical Review A. 14 (5): 1614–1619. Bibcode:1976PhRvA..14.1614F. doi:10.1103/PhysRevA.14.1614.
  9. "Light absorption in ultrashort scale length plasmas".
  10. Link, A.; Freeman, R. R.; Schumacher, D. W.; Van Woerkom, L. D. (2011). "Effects of target charging and ion emission on the energy spectrum of emitted electrons". Physics of Plasmas. 18 (5): 053107. Bibcode:2011PhPl...18e3107L. doi:10.1063/1.3587123.
  11. "Soft-x-ray projection lithography experiments using Schwarzschild imaging optics".
  12. Tichenor, Daniel A.; Kubiak, Glenn D.; Malinowski, Michael E.; Stulen, Richard H.; Haney, Steven J.; Berger, Kurt W.; Nissen, Rodney P.; Wilkerson, G. A.; Paul, Phillip H.; Birtola, S. R.; Jin, P. S.; Arling, Richard W.; Ray-Chaudhuri, Avijit K.; Sweatt, William C.; Chow, Weng W.; Bjorkholm, John E.; Freeman, Richard R.; Himel, Marc D.; MacDowell, Alastair A.; Tennant, Donald M.; Fetter, Linus A.; Wood Ii, Obert R.; Waskiewicz, Warren K.; White, Donald L.; Windt, David L.; Jewell, Tanya E. (1994). "Development of a laboratory extreme-ultraviolet lithography tool". In Patterson, David O (ed.). Electron-Beam, X-Ray, and Ion-Beam Submicrometer Lithographies for Manufacturing IV. Vol. 2194. p. 95. doi:10.1117/12.175834. S2CID   135772193.
  13. Waskiewicz, Warren K.; Biddick, Christopher J.; Blakey, Myrtle I.; Brady, Kevin J.; Camarda, Ron M.; Connelly, Wayne F.; Crorken, A. H.; Custy, J. P.; Demarco, R.; Farrow, Reginald C.; Felker, Joseph A.; Fetter, Linus A.; Freeman, Richard R.; Harriott, Lloyd R.; Hopkins, Leslie C.; Huggins, Harold A.; Kasica, Richard J.; Knurek, Chester S.; Kraus, Joseph S.; Liddle, James A.; Mkrtchyan, Masis M.; Novembre, Anthony E.; Peabody, Jr, Milton L.; Rutberg, Len; Wade, Harry H.; Watson, Pat G.; Werder, Kurt S.; Windt, David L.; Tarascon-Auriol, Regine G.; et al. (1997). "SCALPEL proof-of-concept system: preliminary lithography results". In Seeger, David E (ed.). Emerging Lithographic Technologies. Vol. 3048. p. 255. doi:10.1117/12.275786. S2CID   137021646.
  14. "Above-Threshold Ionization with subpicosecond laser pulses".
  15. Link, Anthony; Chowdhury, Enam A.; Morrison, John T.; Ovchinnikov, Vladimir M.; Offermann, Dustin; Van Woerkom, Linn; Freeman, Richard R.; Pasley, John; Shipton, Erik; Beg, Farhat; Rambo, Patrick; Schwarz, Jens; Geissel, Matthias; Edens, Aaron; Porter, John L. (2006). "Development of an in situ peak intensity measurement method for ultraintense single shot laser-plasma experiments at the Sandia Z petawatt facility". Review of Scientific Instruments. 77 (10): 10E723. Bibcode:2006RScI...77jE723L. doi: 10.1063/1.2336469 .
  16. Jiang, Sheng; Krygier, Andrew G.; Schumacher, Douglass W.; Akli, Kramer U.; Freeman, Richard R. (2014). "Enhancing Bremsstrahlung production from ultraintense laser-solid interactions with front surface structures". The European Physical Journal D. 68 (10): 283. arXiv: 1405.0958 . Bibcode:2014EPJD...68..283J. doi:10.1140/epjd/e2014-50339-4. S2CID   119194795.
  17. Morrison, J. T.; Chowdhury, E. A.; Frische, K. D.; Feister, S.; Ovchinnikov, V. M.; Nees, J. A.; Orban, C.; Freeman, R. R.; Roquemore, W. M. (2015). "Backward-propagating MeV electrons from 1018 W/cm2 laser interactions with water". Physics of Plasmas. 22 (4): 043101. arXiv: 1501.02261 . Bibcode:2015PhPl...22d3101M. doi:10.1063/1.4916493. S2CID   119262288.
  18. Willis, Christopher; Poole, Patrick L.; Akli, Kramer U.; Schumacher, Douglass W.; Freeman, Richard R. (2015). "A confocal microscope position sensor for micron-scale target alignment in ultra-intense laser-matter experiments". Review of Scientific Instruments. 86 (5): 053303. Bibcode:2015RScI...86e3303W. doi: 10.1063/1.4921554 . PMID   26026518.
Richard R. Freeman
Born1944
Corpus, Christi, Texas
NationalityAmerican
Occupation(s)Physicist, academic and researcher
TitleEmeritus Edward Teller Professor of Applied Science
AwardsFellow, Optical Society of America
Fellow, American Physical Society
Academic background
EducationB.S., physics
A.M., physics
Ph.D., physics
Alma mater University of Washington
Harvard University
Doctoral advisor Norman Ramsey