In mathematics, the Riemann xi function is a variant of the Riemann zeta function, and is defined so as to have a particularly simple functional equation. The function is named in honour of Bernhard Riemann.
Riemann's original lower-case "xi"-function, was renamed with an upper-case (Greek letter "Xi") by Edmund Landau. Landau's lower-case ("xi") is defined as [1]
for . Here denotes the Riemann zeta function and is the Gamma function.
The functional equation (or reflection formula) for Landau's is
Riemann's original function, rebaptised upper-case by Landau, [1] satisfies
and obeys the functional equation
Both functions are entire and purely real for real arguments.
The general form for positive even integers is
where Bn denotes the n-th Bernoulli number. For example:
The function has the series expansion
where
where the sum extends over ρ, the non-trivial zeros of the zeta function, in order of .
This expansion plays a particularly important role in Li's criterion, which states that the Riemann hypothesis is equivalent to having λn> 0 for all positive n.
A simple infinite product expansion is
where ρ ranges over the roots of ξ.
To ensure convergence in the expansion, the product should be taken over "matching pairs" of zeroes, i.e., the factors for a pair of zeroes of the form ρ and 1−ρ should be grouped together.
In mathematics, the gamma function is the most common extension of the factorial function to complex numbers. Derived by Daniel Bernoulli, the gamma function is defined for all complex numbers except non-positive integers, and for every positive integer , The gamma function can be defined via a convergent improper integral for complex numbers with positive real part:
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (zeta), is a mathematical function of a complex variable defined as for , and its analytic continuation elsewhere.
The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).
Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:
In mathematical physics, n-dimensional de Sitter space is a maximally symmetric Lorentzian manifold with constant positive scalar curvature. It is the Lorentzian analogue of an n-sphere.
In mathematics, the Hurwitz zeta function is one of the many zeta functions. It is formally defined for complex variables s with Re(s) > 1 and a ≠ 0, −1, −2, … by
In number theory, the Mertens function is defined for all positive integers n as
In mathematics, in the area of analytic number theory, the Dirichlet eta function is defined by the following Dirichlet series, which converges for any complex number having real part > 0:
In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. It is an example of an important arithmetic function that is neither multiplicative nor additive.
In mathematics, the Riemann zeta function is a function in complex analysis, which is also important in number theory. It is often denoted and is named after the mathematician Bernhard Riemann. When the argument is a real number greater than one, the zeta function satisfies the equation It can therefore provide the sum of various convergent infinite series, such as Explicit or numerically efficient formulae exist for at integer arguments, all of which have real values, including this example. This article lists these formulae, together with tables of values. It also includes derivatives and some series composed of the zeta function at integer arguments.
In physics, precisely in the study of the theory of general relativity and many alternatives to it, the post-Newtonian formalism is a calculational tool that expresses Einstein's (nonlinear) equations of gravity in terms of the lowest-order deviations from Newton's law of universal gravitation. This allows approximations to Einstein's equations to be made in the case of weak fields. Higher-order terms can be added to increase accuracy, but for strong fields, it may be preferable to solve the complete equations numerically. Some of these post-Newtonian approximations are expansions in a small parameter, which is the ratio of the velocity of the matter forming the gravitational field to the speed of light, which in this case is better called the speed of gravity. In the limit, when the fundamental speed of gravity becomes infinite, the post-Newtonian expansion reduces to Newton's law of gravity.
In mathematics, a reflection formula or reflection relation for a function f is a relationship between f(a − x) and f(x). It is a special case of a functional equation. It is common in mathematical literature to use the term "functional equation" for what are specifically reflection formulae.
In number theory, Li's criterion is a particular statement about the positivity of a certain sequence that is equivalent to the Riemann hypothesis. The criterion is named after Xian-Jin Li, who presented it in 1997. In 1999, Enrico Bombieri and Jeffrey C. Lagarias provided a generalization, showing that Li's positivity condition applies to any collection of points that lie on the Re(s) = 1/2 axis.
Oblate spheroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional elliptic coordinate system about the non-focal axis of the ellipse, i.e., the symmetry axis that separates the foci. Thus, the two foci are transformed into a ring of radius in the x-y plane. Oblate spheroidal coordinates can also be considered as a limiting case of ellipsoidal coordinates in which the two largest semi-axes are equal in length.
In mathematics, the simplest real analytic Eisenstein series is a special function of two variables. It is used in the representation theory of SL(2,R) and in analytic number theory. It is closely related to the Epstein zeta function.
In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by Bernhard Riemann, after whom it is named.
In mathematics, the Riemann–Siegel formula is an asymptotic formula for the error of the approximate functional equation of the Riemann zeta function, an approximation of the zeta function by a sum of two finite Dirichlet series. It was found by Siegel (1932) in unpublished manuscripts of Bernhard Riemann dating from the 1850s. Siegel derived it from the Riemann–Siegel integral formula, an expression for the zeta function involving contour integrals. It is often used to compute values of the Riemann–Siegel formula, sometimes in combination with the Odlyzko–Schönhage algorithm which speeds it up considerably. When used along the critical line, it is often useful to use it in a form where it becomes a formula for the Z function.
In fluid dynamics, a cnoidal wave is a nonlinear and exact periodic wave solution of the Korteweg–de Vries equation. These solutions are in terms of the Jacobi elliptic function cn, which is why they are coined cnoidal waves. They are used to describe surface gravity waves of fairly long wavelength, as compared to the water depth.
In mathematical physics, the Wu–Sprung potential, named after Hua Wu and Donald Sprung, is a potential function in one dimension inside a Hamiltonian with the potential defined by solving a non-linear integral equation defined by the Bohr–Sommerfeld quantization conditions involving the spectral staircase, the energies and the potential . here a is a classical turning point so , the quantum energies of the model are the roots of the Riemann Xi function and . In general, although Wu and Sprung considered only the smooth part, the potential is defined implicitly by ; with N(x) being the eigenvalue staircase and H(x) is the Heaviside step function.
This article incorporates material from Riemann Ξ function on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.